
Adaptive Approximate State Storage

A dissertation presented by

Peter C. Dillinger

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

December, 2010

Acknowledgments

I can only begin to thank all who have helped me in completing this Ph.D.

I especially thank my advisor, Panagiotis (Pete) Manolios, for his pa-

tience, insight, encouragement, constructive criticism, and perspective on

computer science, working as a scientist, and everything. After my Bache-

lor’s and Master’s degrees at Georgia Tech, I decided to continue there for a

Ph.D. because of an awesome professor I had recently started working with,

Pete Manolios. I was able to transition to Ph.D. work with the confidence

that I had an advisor who would help me find the best ways to apply my

strengths and who would work with me on my weaknesses. Without Pete,

I would not have been able to distinguish the things that only I would care

about from the things that would become widely read and respected. For

such successes, first thanks goes to Pete.

Although I transferred to Northeastern University to continue working

under Pete, I have many people to thank from my time at Georgia Tech. Per-

haps at the top of the list is the great teacher and wise computer scientist,

Prof. Olin Shivers, because I took three great classes from him while at Geor-

gia Tech and he moved to Northeastern University a little before Pete and I

did. I value the time and many interesting interactions I had with Profes-

sors Yannis Smaragdakis and Mary Jean Harrold. I thank Professors Spencer

Rugaber and Dick Lipton for serving on my qualifying exam committee, and

also Santosh Pande, Alex Orso, Jim Xu, and H. Venkateswaran for many use-

ful discussions over the years. Fellow Ph.D. students were always great for

bouncing ideas off of and helped me to keep a shred of sanity. They included

i

ii ACKNOWLEDGMENTS

Daron Vroon, Sudarshan Srinivasan, Yimin Zhang, G.J. Halfond, Jim Clause,

Matt Might, David Fisher (who also moved to Northeastern!), Gayatri Sub-

ramanian, Roma Kane, Saswat Anand, David Dagon, David Hilley, and many

others.

At Northeastern University, I would like to thank those who welcomed

Pete and me into collaborative relationships. Prof. Gene Cooperman and his

students in particular were great about welcoming us into a forum to throw

around and vet ideas relating to data structures, systems, and enumeration

algorithms. On my thesis committee, Gene was active, thoughtful, and al-

ways constructive, and thanks to his input, my dissertation is better. After

proving my skill in his beautifully-constructed algorithms class, Prof. Jay

Aslam agreed to be on my committee, and I thank him for his insightful in-

put and cheerful service. Thanks to other professors and students who sent

ideas and feedback my way. Once again, I did not go completely insane,

thanks to fellow students including Stevie Strickland (an old friend), David

Herman, Dimitris Vardoulakis, Richard Cobbe, David Fisher (again!), Carl

Eastlund, Dan Kunkle, Felix Klock, Christine Hang (Chambers), Ben Cham-

bers, and heir to ACL2s, Harsh Raju Chamarthi.

Others to thank include those I worked with during internships, and oth-

ers who have made important contributions and have been willing to cor-

respond on technical points. I thank Gerard Holzmann for all his work on

SPIN, and for the opportunity to work with him and Rajeev Joshi as an in-

tern at NASA/JPL. I thank Willem Visser, Corina Pasareanu, Peter Mehlitz

and others for the opportunity to work with them at NASA/Ames. I particu-

larly thank Willem, now a professor at Stellenbosch, for serving on my thesis

committee and, specifically, striking down an erroneous claim I tried to make

regarding transitive omissions. My thesis builds on important contributions

by Gerard Holzmann, Michael Mitzenmacher, Rasmus Pagh, John G. Cleary,

and others, but I thank these in particular for taking time to answer my

technical queries.

iii

I would also like to thank the National Science Foundation, for funding

a grant that supported me during much of my time as a Ph.D. student. For

that grant, I was the primary developer of ACL2s, “The ACL2 Sedan,” which

has helped make computer-aided theorem proving accessible even to college

freshmen 1. Though it took time away from my unrelated thesis work, my

work on ACL2s was unquestionably valuable in boosting and expanding my

reputation and experience. And it kept the stipend coming. And it gave me

a chance to collaborate with some great people at the University of Texas

at Austin, most notably Matt Kaufmann and my grand-advisor, J Moore. I

thank them for all the ways in which they have helped and supported me

over the years. In particular, I thank Matt for co-authoring a paper with

me [22] and, thus, lowering my Erdős number to three, and for offering a

job reference that seems compelling enough to land me any job anywhere.

Ever.

Olin Shivers and Matt Might hold a special place in my heart. According

to my recollection, each of them said that by taking a full time job before

finishing my dissertation, I would not finish my Ph.D. I assume they were

merely giving me the perfect encouragement to finish: an opportunity to

prove them wrong. I thank them for that extra motivation. It is likewise

apropos that I thank my employer, Coverity, for allowing a leave of absence

in which to finish. Proving Matt and Olin wrong—it still counts, right?

I proudly also thank my favorite distraction from Ph.D. work. No, I’m not

talking about Portal2. In fact, “distraction” is not the right word, because it

might be more accurate to say that the Ph.D. work was a distraction while I

was waiting to meet this one. I’m talking about Miss Natasha Herman, my

fiancée. She has enriched my life immensely and has helped me to become

more the person I want to be, and for that I will always thank her.

1I would not have believed it if I had not seen it with my own eyes—and my own red
pen. I thank the Northeastern College of Computer and Information Science for allowing
me to teach the course one semester, and supporting me during teaching.

2Registered trademark of the Valve Corporation.

iv ACKNOWLEDGMENTS

Earlier steps in making this achievement possible are thanks to my high

quality public education in Thomasville, Georgia, at the Georgia Governor’s

Honors Program, and at Georgia Tech. I am grateful to all the teachers who

put in an extra effort to challenge an arrogant kid like me.

Final thanks go to those who took the earliest steps in making this achieve-

ment possible, my parents Charles and Sissy Dillinger. Their dedication,

moral support, and logistical support cannot be overstated. At an early age,

they taught me to love knowledge, to love computers and programming,

and to love a noble challenge. From that point, they made their best possi-

ble move: to let me explore my passion on my own terms and according to

my own motivation, but to diligently smooth out any structural or logistical

barriers to my learning. Perhaps the best way I know to thank my parents is

with the observation, “I am pleased with my accomplishment, proving you

should be with yours.”

Thesis Statement

In an explicit-state model checker, no knowledge of the reachable state space

size is needed for the speed and the possibility of overlooking errors to be

near optimal for available memory.

v

Abstract

Efficiently storing and matching visited states is key to the effectiveness of

explicit-state model checkers such as SPIN. Models of concurrent programs

often have too many reachable states to enumerate easily in main memory,

and an efficient model checker can exhaust main memory in minutes by stor-

ing state descriptors exactly. A popular alternative is to over-approximate the

set of visited states using a randomized, probabilistic data structure, such as

a Bloom filter. Because the approximation is sound and does not slow down

the search with revisitation of states, it tends to find errors quickly. Because

it is probabilistically complete, the approach can also convincingly demon-

strate lack of errors.

In this dissertation, I analyze the approximate state storage problem in

unprecedented detail, improve upon standard solutions, and demonstrate

a novel approach that solves a configuration dilemma facing users of the

standard solutions. Especially with my improvements, the best Bloom filter

or hash compaction configuration for a given situation is quite good, but

choosing the best configuration depends on a good estimate of the number

of reachable states. Such an estimate is usually only available after checking

a model. I solve this dilemma with an efficient storage scheme that is not tied

to a particular estimate, because it is adaptive. Regardless of the number of

states encountered at run time, its accuracy is near the information-theoretic

optimal. It is also competitively fast, thanks to a novel in-place adaptation

algorithm and a favorable access pattern to memory.

vii

Contents

Acknowledgments i

Thesis Statement v

Abstract vii

Contents ix

List of Figures xv

Outline of Contributions xix

1 Motivation and Scope 1

1.1 Verification problems . 2

1.2 Explicit-state vs. alternatives 2

1.3 State enumeration . 3

1.4 Out-of-core storage and caching 4

1.5 Heuristic storage . 5

1.6 Non-heuristic, potentially over-approximate storage 7

1.7 Hash functions . 8

2 Overview of Dissertation 11

2.1 Understanding the problem 11

2.2 Bloom filters (bitstate hashing) 15

2.2.1 Optimization . 15

ix

x CONTENTS

2.2.2 Speed . 15

2.2.3 k = 3 usefulness . 16

2.2.4 Usefulness of other configurations 19

2.3 Compacted hash tables (hash compaction) 19

2.4 Adaptive Cleary tables . 21

2.4.1 Exact reduction . 21

2.4.2 Cleary tables . 22

2.4.3 Adaptation . 23

2.4.4 Designs . 24

2.4.5 Active state matching 26

3 The State Storage Problem 27

3.1 Definition . 28

3.2 Usage patterns . 28

3.3 Single case performance dimensions 29

3.4 Single configuration performance 31

3.5 Data structure performance 33

3.6 Accuracy details . 34

3.6.1 False positive rate . 34

3.6.2 Omissions . 36

3.6.3 The Transitive Omission Problem 37

3.6.4 Error omission bound 39

3.6.5 Accuracy optimization criteria 40

3.6.6 More definitions and analysis 41

4 Lower Bounds for State Storage 45

4.1 Most cases . 45

4.2 Various magnitudes . 48

4.3 Simpler bounds . 50

4.4 “Asymptotically compact” litmus test 53

4.5 Exact representation, infinite universe 54

xi

5 Classical Solutions 57

5.1 Open-addressed table . 57

5.2 Bit table . 58

5.3 Compacted chaining . 59

5.3.1 Description . 60

5.3.2 Analysis . 61

5.3.3 A clever design: 2/3rds chaining 63

5.4 Summary . 63

6 Bloom filters (Bitstate hashing) 67

6.1 Introduction . 67

6.2 Accuracy analysis . 68

6.3 Optimization . 71

6.3.1 False positive rate, known v and m 71

6.3.2 Expected hash omissions, known v and m 76

6.3.3 Unknown v . 77

6.4 Speed and fingerprinting . 79

6.4.1 History . 79

6.4.2 Fingerprinting Bloom filter 80

6.4.3 Hash-extending Bloom filter 82

6.4.4 Hash-reusing Bloom filter 87

6.4.5 Empirical validation 88

6.5 Fast index computation . 93

6.5.1 Double hashing . 94

6.5.2 Triple hashing . 100

6.5.3 Improved double hashing 101

6.5.4 Enhanced double hashing 102

6.5.5 Related work: exponential double hashing 105

6.5.6 Empirical validation 107

6.5.7 In practice and future work 112

xii CONTENTS

6.6 Summary . 113

7 Compacted tables (Hash compaction) 115

7.1 Description . 116

7.1.1 Basics . 116

7.1.2 Collision resolution 117

7.1.3 Ordered hashing . 118

7.1.4 Implementation notes 119

7.1.5 Maximum occupancy and configuration 120

7.2 Accuracy analysis and validation 121

7.2.1 By collisions . 121

7.2.2 Unordered . 122

7.2.3 Ordered, false positive rate 124

7.2.4 Ordered, collisions 127

7.2.5 Asymptotics . 129

7.2.6 Negative result: reordered hashing 130

7.3 Summary . 131

8 Inexact Storage Using Exact Storage 133

8.1 Introduction . 134

8.2 “Balls and bins” partitioning 135

8.3 “Even” partitioning . 138

8.4 Comparison . 141

8.5 Summary . 144

9 Cleary tables 145

9.1 Description . 146

9.1.1 Representation . 146

9.1.2 Random access . 148

9.1.3 An optimization . 152

9.2 ADD algorithm . 153

xiii

9.3 Analysis . 158

9.4 Validation . 160

9.4.1 Speed . 160

9.4.2 Compactness . 161

9.5 Variations . 164

9.5.1 Mini-pointers (sometimes useful) 164

9.5.2 Non-power-of-two number of cells (sometimes useful) 166

9.5.3 Different number of cells and home addresses (some-

times useful) . 166

9.5.4 Edge extension or edge wrapping (marginal benefit) 170

9.5.5 Correcting directional favor (marginal benefit) . . . 174

9.5.6 Unidirectional (not recommended) 176

9.5.7 Summary of Variations 178

9.6 Summary . 179

10 Dynamic adaptation of Cleary tables 181

10.1 Understanding fast adaptation 181

10.2 Closer-first traversal . 185

10.2.1 Description . 185

10.2.2 Algorithm . 191

10.3 1-to-2 adaptation . 195

10.4 2-to-3 and 3-to-4 adaptation 202

10.4.1 3-in-4 design . 203

10.4.2 Algorithm changes for 3-in-4 ADD 204

10.4.3 Algorithm changes for 2-to-3 and 3-to-4 adaptation . 205

10.5 Post-adaptation access times 206

10.6 Adaptation to Bloom filter 209

10.6.1 k = 1 . 209

10.6.2 Hash-reusing k = 2 210

10.7 Summary . 212

xiv CONTENTS

11 Adaptive storage scheme 215

11.1 Near optimal accuracy by design 216

11.1.1 Utility of the theorem 218

11.1.2 Design . 220

11.1.3 Exact storage case 221

11.1.4 Inexact storage case 225

11.1.5 Final notes on the theoretical bound 231

11.2 Near optimal speed and accuracy in practice 232

11.2.1 Practical problems with full design 232

11.2.2 Practical implementation 234

11.2.3 Active state matching 236

11.2.4 Practical speed . 237

11.2.5 Practical accuracy 243

11.3 Parallel model checking, etc. 244

11.3.1 Message-passing parallel 246

11.3.2 Shared memory parallel 247

11.3.3 Independent parallel 248

11.3.4 Summary . 249

12 Other Related Work 251

12.1 Golomb-compressed sequence 251

12.2 Cuckoo hashing . 253

12.3 Multilevel hashing . 255

12.4 Summary . 256

Bibliography 257

List of Figures

2.1 Comparison of inaccuracy of Bloom filter and compacted table

configurations with the theoretical optimal. 17

2.2 Comparison of inaccuracy of adaptive storage designs with lower

bound. 25

3.1 State graph severely affected by the transitive omission problem. 38

4.1 Graphical depiction of various memory lower bounds vs. false

positive rate. 52

5.1 Allocation unit in a 2/3rds chaining table. 64

5.2 Elements being added to one chain of a 2/3rds chaining table. . 64

5.3 Comparison of the compactness of classical structures for various

densities. 65

6.1 Comparison of inaccuracy of Bloom filter configurations with in-

formation-theoretic lower bounds. 72

6.2 Accuracy of a flawed method for using non-discrete k in a Bloom

filter compared to optimistic expectations. 74

6.3 Comparison of methods for choosing best Bloom filter k. 75

6.4 How fingerprinting affects the false positive rate of a Bloom filter. 83

6.5 Comparison of index computation in “fingerprinting,” “hash-ex-

tending,” and “hash-reusing” Bloom filters. 85

xv

xvi LIST OF FIGURES

6.6 Comparison of false positive rates of three kinds of Bloom filters

based on limited hash information with a standard Bloom filter. 90

6.7 Comparison of the speed of “fingerprinting,” “hash-extending,”

and “hash-reusing” Bloom filters. 91

6.8 Algorithm for double, enhanced double, and triple hashing in

Bloom filters. 95

6.9 Comparison of false positive rates of Bloom filters with fast index

computation. 108

6.10 Regions of configurations in which fast index computation tech-

niques have low impact on false positive rate. 110

6.11 Comparison of the ADD time for Bloom filters of various sizes with

various index computation methods. 111

7.1 Average collisions per negative query, expected and observed, for

“unordered” and “ordered” compacted table designs, at various

occupancies. 123

7.2 False positive rates, expected and observed, of three compacted

table designs, at various occupancies. 124

7.3 Omissions and non-omissions, observed and expected, in two de-

signs of compacted tables. 126

7.4 Average collisions per negative query, expected and observed, for

“ordered” and “static” compacted table designs, at various occu-

pancies. 128

9.1 Logical diagram of part of a Cleary table. 147

9.2 Adding five elements to a Cleary table with eight cells. 150

9.3 A complex example, filling a Cleary table with eight cells. . . . 151

9.4 Verification times using standard Bloom filters and Cleary tables

of various final occupancies. 162

9.5 Comparison of inaccuracy of comparable Bloom filter, compacted

table, and Cleary table configurations. 164

xvii

9.6 A rough explanation for small imbalances in the expected cell

occupancy of a standard Cleary table. 172

9.7 Observed occupancy probabilities for each cell in Cleary tables

with different edge behaviors. 173

9.8 Observed occupancy probabilities for each cell in larger Cleary

tables with different edge behaviors. 174

9.9 Observed occupancy probabilities for each cell in Cleary tables

with different directional favors. 175

9.10 The idea behind why bidirectional linear probing is more efficient

than unidirectional in a Cleary table. 177

9.11 Observed occupancy probabilities for each cell in Cleary tables

using unidirectional linear probing. 178

10.1 A simple “before and after” example of 1-to-2 Cleary table adap-

tation. 183

10.2 Categorizations and traversal order for Cleary table adaptation. 186

10.3 Allowed and disallowed categorization combinations of adjacent

cells in a Cleary table. 187

10.4 Example of bit layouts for Cleary tables that are compatible with

my adaptation algorithms. 196

10.5 Comparison of Cleary table layout after adaptation and layout

with no adaptation. 207

10.6 A simple “before and after” example of adapting a Cleary table to

a k = 1 Bloom filter. 210

11.1 Life cycle of Cleary table and Bloom filter configurations in my

adaptive storage design. 217

11.2 Competitive inaccuracy of exact storage in variants of adaptive

storage scheme. 223

11.3 Comparison of predicted inaccuracy of adaptive storage variants

with information-theoretic lower bounds. 226

xviii LIST OF FIGURES

11.4 Comparison of predicted false positive rates of adaptive storage

variants with information-theoretic lower bounds. 228

11.5 Demonstration of inaccuracy bounds on adaptive storage for var-

ious universe sizes. 230

11.6 The progress over time in exploring a state graph with different

storage schemes. 239

11.7 The time per state transition over the duration of exploring a

state graph with different storage schemes. 240

11.8 Empirical validation of predicted hash omissions for the adaptive

storage scheme. 245

11.9 Empirical validation of predicted probabilities of no omissions for

the adaptive storage scheme. 246

Outline of Contributions

• Chapter 3 – I coin terminology and derive formulas for analyzing the
accuracy of over-approximate storage of visited states in explicit-state
model checkers.

• Chapter 4 – In a unified way, I derive space lower bounds for both
approximate and exact representations of sets of states, regardless of
universe size.

• Chapter 6 – I demonstrate and analyze techniques for drastically re-
ducing the hashing requirements and increasing the speed of Bloom
filters, which are commonly used for approximate visited set storage.

• Chapter 7 – I describe the nature of Stern/Dill’s remarkably compact
hash table for approximating a set, including showing how it can be
made more accurate if all the elements to be added are known in ad-
vance.

• Chapter 8 – I analyze two ways of using an exact set representation
to implement an approximation, and show that despite them being
indistinguishable in most cases, there are some cases in which one is
noticeably better.

• Chapter 9 – Regarding a compact hash table design by Cleary, I de-
scribe and analyze variants and improve the encoding of metadata.

• Chapter 10 – I show how the representation of the Cleary table permits
fast, in-place adaptation to accommodate more elements (states) with
lower accuracy, as a valuable alternative to starting over because of
overflow.

• Chapter 11 – Using Cleary tables with adaptation and a Bloom filter
with limited hashing, I describe a state storage scheme that adapts to
the number of states encountered at runtime, and show that its speed
and accuracy are never far from optimal.

xix

CHAPTER 1

Motivation and Scope

The primary motivation for this dissertation is in storing visited states in

explicit-state model checking of asynchronous/non-deterministic programs.

When searching for errors in the state graph induced by such a program,

remembering the set of visited states (vertices) is needed to avoid repeated

exploration where there are confluences in the graph. Verifying complex pro-

grams can quickly exhaust main memory if storing visited states exactly—a

consequence of the state explosion problem. Resorting to out-of-core stor-

age or forgetting some visited states usually slows down the rate at which

new states are explored. Heuristic compression of states in memory is time

consuming and dependent on the program structure.

This dissertation focuses on non-heuristic, potentially over-approximate

storage of visited states, based on hashing. Over-approximating the visited

set with a structure such as a Bloom filter is popular because, compared

to full storage, it is roughly as fast per unique state but can explore orders

of magnitude more unique states using a given amount of memory. There

is a possibility of overlooking erroneous states, but this can be quite small

and has little impact on the ability to find errors in large models quickly.

This dissertation extends the state-of-the-art in understanding, evaluating,

and choosing over-approximate storage of visited states, and presents a new

scheme that is, in an unprecedented way, never a bad choice.

1

2 CHAPTER 1. MOTIVATION AND SCOPE

1.1 Verification problems

Explicit-state model checking is most often applied to models of asynchro-

nous software or hardware systems. It can be applied to any non-determinis-

tic program, but asynchrony is probably the most interesting source of non-

determinism. Thus, parallel and distributed systems are common targets for

model checking. Model checking is usually only terminating and complete

for finite programs—those with a finite state space—but that does not pre-

vent bug-hunting in infinite or intractable state spaces. A more sophisticated

approach to verifying a design is to work with models that remove features

and/or hide implementation details. Models can be written from a high-level

design specification or extracted from an implementation [50, 45]. In either

case, the goal is a more tractable state space that “exercises” the features to

be verified.

Writing and/or extracting models for verification is beyond the scope of

this dissertation. Good resources on the subject include Gerard Holzmann’s

book [42] and methodology papers in collaboration with others [50, 45].

I focus on how the model is verified once given to an explicit-state model

checker.

1.2 Explicit-state vs. alternatives

The relative usefulness of explicit-state model checking to particular prob-

lems compared to alternatives is not a topic of this dissertation either, but I

briefly offer evidence that it is useful in many cases. SPIN won the ACM Soft-

ware System Award in 2001 for being “a highly successful and widely used

software model-checking system ... applicable to large and highly complex

software systems.” SPIN has been used to verify phone switch software [49],

flood control software [54], and spacecraft software [44]. Murϕ has proven

valuable in verifying cache coherence protocols [76] and still has an active

user community. Java PathFinder and Bogor are used to find errors in con-

1.3. STATE ENUMERATION 3

current object-oriented programs. All of these tools use explicit-state search.

It is worth mentioning how symbolic model checking methods differ from

explicit-state. Explicit-state computes one successor of one state at a time.

These can stand for more than themselves using reductions, but each tran-

sition is computed on only one state at a time. Symbolic methods consider

many states simultaneously by applying the transition relation to a specially-

encoded set of states. These special encodings include binary decision dia-

grams (BDDs) [12] and logical formulae [4]. SAT solvers are used to check

for counterexamples to logical formulae. Symbolic methods are more heuris-

tic in that efficient verification depends on the right kind of “regularity” in

the program structure.

1.3 State enumeration

This dissertation focuses on explicit-state verification algorithms based pri-

marily on state enumeration, because these are most affected by the per-

formance of the visited set. More sophisticated algorithms, such as nested

depth-first search [47], do not visit as many states as quickly due to delib-

erate re-visitation of states but enable checking of more sophisticated prop-

erties. Enumerating all reachable states (vertices) in a program (implicit

graph) requires exploring all transitions (edges) using a graph search algo-

rithm, so enumeration allows us to check any properties local to each state

or transition, such as invariants and deadlock-freedom.

To find errors quickly and reduce memory requirements, checking prop-

erties by state enumeration is done “on-the-fly.” Rather than constructing the

entire state graph in memory and then checking properties, properties are

checked as the graph is explored, and only the set of visited states (vertices)

must be stored in memory. Depth-first search is a common search algorithm,

but breadth-first search has the advantage that counterexamples are auto-

matically minimized with respect to the number of transitions from a start

4 CHAPTER 1. MOTIVATION AND SCOPE

state. Because they are accessed linearly, the bulk of the depth-first stack or

breadth-first queue can be stored on disk with little impact on speed.

Symmetry and partial-order reductions play crucial roles in reducing the

set of states that must be visited to preclude the existence of errors in all

reachable states. Symmetry reduction is almost transparent to the rest of

the search procedure because all it requires is (possibly heuristic) canonical-

ization of the order of symmetric state elements before each state is queried

against the visited set [15]. This would only have implications for how to

represent the set of visited states if that representation were dependent on

the structure of state descriptors, and I explain soon that such representa-

tions are outside the scope of this dissertation.

Unlike symmetry reductions, partial-order reductions often have a signif-

icant impact on the rest of the search algorithm. The most common imple-

mentations of partial-order reduction utilize a cycle proviso that must deter-

mine whether a state is active—on the depth-first stack [47] or breadth-first

queue [8]. This requires random access to those states, and providing such

random access is likely to benefit from being combined with random access

to the visited states—since each active state has also been visited. This dis-

sertation considers and addresses this need.

Despite reductions, abstraction, etc., concurrent programs still suffer

from the state explosion problem, in which the number of states tends to

be exponential in the number of features or entities in the program. For

more on how the properties to be checked influence the algorithms to check

them, see a survey by Valmari [81].

1.4 Out-of-core storage and caching

Verification algorithms that do not represent all visited states in core mem-

ory have not been widely adopted, probably because they have not proven

competitive in finding errors quickly. When fast falsification is a goal, one

1.5. HEURISTIC STORAGE 5

should use a technique that is always able to explore an enormous number

of unique states quickly. Except for this section, this dissertation focuses only

on algorithms that represent all visited states in memory.

Storing some or all visited states on disk inhibits random access, which

tends to slow down the search. Matching visited states on disk will typically

require numerous scans of visited states and duplicates. By contrast, storing

the bulk of the search stack or queue on disk involves writing and reading

each visited state no more than once. The difference is especially significant

because state descriptors can be hundreds or thousands of bytes and it is

possible for a million or more to be computed per second. Using hashing and

other tricks can reduce these problems but does not eliminate them [3, 71].

Another approach is to use main memory as just a cache of many of

the visited states [32, 30, 71]. In such a scheme, uncached visited states

can be revisited, and running times can easily succumb to the deleterious

worst-case complexity. Specifically, as the proportion of visited states that

are cached gets small, the rate at which truly new states are visited slows

greatly.

Both approaches (disk and caching) are useful for “high-assurance verifi-

cation” of large problems but tend to be poor at “fast falsification.” Discred-

iting these approaches is not important to my thesis, however. The problem

of representing some visited states in main memory is closely related to the

problem of representing all visited states in main memory. Thus, develop-

ment of my thesis is likely to benefit these approaches; in fact, the main

technique promoted by my thesis is more easily compatible with caching

than many alternatives, because entries can be replaced or even deleted.

1.5 Heuristic storage

Some ways of storing visited states are engineered to take advantage of “reg-

ularity” in state descriptors; these are outside the scope of this dissertation.

6 CHAPTER 1. MOTIVATION AND SCOPE

Usually the set of reachable states 1 in a program is minuscule compared to

the set of describable states 2—assuming the latter is even bounded. Models

of software or hardware often have a fixed set of finite variables; full pro-

grams often have unbounded allocation potential. In either case, it is com-

mon for most bit vectors interpretable as states not to be reachable in the

program. Furthermore, the reachable states tend to have some predictable

structure and redundancy, within themselves and among other reachable

states. This tendency, which makes symbolic model checking effective in

many cases, can also be leveraged to reduce memory requirements in full

explicit-state verification.

In the simplest kind of heuristic storage, each state is losslessly com-

pressed before being stored in a hash table of visited states. SPIN, for exam-

ple, does some simple compression by default (disabled with -DNOCOMP)

for full/lossless verification. This will usually slow execution somewhat, but

it is possible for savings in hashing time to exceed compression time. A more

elaborate scheme, collapse compression, tracks all values actually taken by

pieces of each state and stores only indexes into pools of those values [41].

This is available with -DCOLLAPSE in SPIN, and has proven critical to ef-

ficient operation of Java PathFinder, which uses collapse compression for

active states.

Perhaps the most elaborate known heuristic state storage is with a min-

imized/canonical automaton, such as an ordered binary decision diagram

(OBDD). Even using explicit state enumeration, the set of visited states can

be stored in an OBDD [83]. Holzmann and Puri found that a byte-based

automaton tends to perform better than a binary/bit-based one [48]; the

byte-based design is available in SPIN with -DMA. Dramatic memory savings

are possible but are problem-specific. Speed can be competitive but is more

likely to be rather slow.

1Reachable states are those that can be encountered in a valid execution of the program.
2Describable states simply have an assignment of the correct type to each live variable

and memory location.

1.6. NON-HEURISTIC, POTENTIALLY OVER-APPROXIMATE STORAGE 7

Elaborate heuristic storage is useful in high-assurance verification, but

has weaknesses for fast falsification. Quite simply, better compression re-

quires more time, and more time slows the rate at which new states are

explored. Heuristic storage also does not have a good solution to the prob-

lem of what to do when memory has been exhausted; the best known auto-

matic lossless compression might still require a sizable amount of memory

per state.

1.6 Non-heuristic, potentially over-approximate

storage

Non-heuristic, over-approximate storage of visited states is popular for en-

abling an enormous number of unique states to be visited quickly, and this

dissertation analyzes and extends this class of storage techniques. A basic ex-

ample is to store only a small hash of each state visited. This is non-heuristic

because a good hash function will mask any regularity among states. This

over-approximates the visited set because there might be states that have not

been visited whose hash is the same as one visited, meaning the structure

would falsely consider such states as visited. This introduces the possibil-

ity of the search skipping over errors, but I describe a metric we can use to

choose the storage technique with the smallest such possibility.

Despite the possibility of omitting errors, over-approximate storage is

quite useful. First of all, if the search discovers an error—which is common

in the development process—it does not matter if the search was inexact

in this way. Any error found is a reachable error in the program/model.

Secondly, the key to finding errors quickly is exploring as many unique states

as possible as quickly as possible. If memory is exhausted by simple exact

storage, the previous alternatives (disk storage, throwing away states, or

elaborate lossless compression) slow down the rate at which new states are

visited. Over-approximate storage can visit a number of unique states on

8 CHAPTER 1. MOTIVATION AND SCOPE

order with the number of bits of memory available, with no loss of speed.

This makes it ideal for fast falsification.

Over-approximate storage can also provide high-assurance verification

using much less memory than exact storage. For example, consider a prob-

lem with state descriptors of 1000 bytes. A good over-approximate storage

scheme would be highly accurate storing just 10 bytes per state. The prob-

ability of that scheme omitting any states from the search would be around

2−50. The hardware running the algorithm is probably not this reliable, and

the memory required is two orders of magnitude smaller than exact storage.

A significant weakness of known techniques is dynamic flexibility: the

ability to adapt to the number of states encountered at run time. Using a

scheme that is good at fast falsification is far from optimal if the state space

is small enough for a more accurate search. Using a scheme that is good at

high-assurance verification requires good knowledge of the state space size.

The problem is that the user knows little about the (reachable) state space

size until a model is searched. In this dissertation, I examine these short-

comings in detail and describe an alternative that offers very competitive

fast falsification and high-assurance verification no matter how big the state

space is. That same technique can also store states exactly when enough

memory is available. This offers the psychological benefit of knowing no

approximations were used. This dissertation only examines exact storage in

the case of fixed-size state descriptors, because (as explained in this disser-

tation) the problem of storing state descriptors of unbounded, variable size

has fundamental differences that make it incompatible with our notion of

optimality.

1.7 Hash functions

A key aspect of any non-heuristic storage is the hash function, but others’

work allows hashing to be largely factored out of this dissertation. I be-

1.7. HASH FUNCTIONS 9

lieve the problem of quickly computing effectively random hash values of

states is well solved, most notably by Bob Jenkins [51, 52]. In many years

of testing the probabilistic behavior of model checkers using Jenkins’ hash

functions, any deviation from the expectation for a truly random hash func-

tion has been negligible, even when extracting more information from the

hash function than the designer intended. Jenkins’ hash functions are also

among the fastest available—much faster than MD5 for example. Jenkins’

functions, however, make no attempt to be cryptographically secure, so it

might be easy for a well-informed adversary to manipulate its output.

For problems with especially large state descriptors, heuristically fast

hash functions can be faster than Jenkins [25]. These hash functions take

advantage of the tendency of nearby states to share a lot of common data

in their descriptors, by computing hash values incrementally/differentially

based on what parts have changed from the previous state. Such a scheme

was introduced by Cousin and Hélary in Murϕ [18], which I implemented

in 3SPIN, a modified version of SPIN. Even when using a heuristically fast

hash function, the compactness and accuracy of over-approximations such

as Bloom filters are non-heuristic.

In this dissertation, I use Jenkins’ hash functions almost exclusively, and

when important, I validate that they behave like random hash functions.

This will allow me to argue that regular structure in state descriptors is not

affecting and will not affect the compactness and accuracy of non-heuristic

storage.

CHAPTER 2

Overview of Dissertation

This dissertation bounds the possible accuracy of non-heuristic data struc-

tures that represent or over-approximate a set of states, shows how the best

known structures are likely to fall well short of this ideal the first time verifi-

cation of a program is attempted, and describes a new scheme that is never

too far from this ideal. My new scheme uses known structures, Cleary’s com-

pact hash tables and Bloom filters, but adds the ability to adapt efficiently

to the number of states encountered at run time. I make other contribu-

tions to the understanding, analysis, and implementation of these and other

important solutions along the way.

2.1 Understanding the problem

To be used as a visited set, a set data structure only needs to support ADD

and QUERY operations. As discussed, I am not considering structures that

might “throw away” elements, by returning negative to a QUERY of something

already ADDed. I am considering structures that might give false positive

queries, as a result of over-approximation.

The number of omissions from a search is the number of states not fully

explored because of false positive queries from the visited list. These can

either be hash omissions, which are those states that were erroneously con-

sidered already visited by the visited set, or transitive omissions, which are

11

12 CHAPTER 2. OVERVIEW OF DISSERTATION

states never queried against the visited set because they were made unreach-

able due to other omissions. In some tools, only transitive omissions lead to

the possibility of overlooking errors.

In any case, the key to maximizing the accuracy (error-finding ability) of

a search is minimizing expected hash omissions. The relationship between

transitive omissions and hash omissions varies from problem to problem. We

call this the transitive omission problem. There is an intuitive and empirical

correlation of transitive and hash omissions, but the only simple hard truth

of the relationship is that a search with zero hash omissions has zero tran-

sitive omissions. Because none of the evidence suggests a better approach,

the best known approach to minimizing total omissions is minimizing hash

omissions.

Since the number of hash omissions for a given setup is a random vari-

able, the “best” setup is the one with the smallest expected value for hash

omissions. This will be our metric for inaccuracy. In the inverse, it measures

accuracy. When polarity is not important, I will simply call this our “accuracy

metric.”

Accuracy metrics others have used cannot be predicted reliably or have

limited applicability. It would be nice to have one number which is the

probability of finding an assumed single error in the state space, but it is

not known how to determine such in the presence of the transitive omis-

sion problem. Coverage, the proportion of reachable states actually visited,

would seem to offer that, but it cannot be predicted reliably also because of

transitive omissions. Another common metric is the probability of any omis-

sions, which is fine when the search is expected to be highly accurate, but

is not helpful for comparing less accurate searches. Note that the expected

hash omissions roughly equals the probability of any omissions when closer

to zero than to one. Unlike these other metrics, expected hash omissions is

measurable and informative for all accuracies.

Computing expected hash omissions after a search can be precise, but

2.1. UNDERSTANDING THE PROBLEM 13

predicting the accuracy of a search is more complicated. After a search, we

know how many states were recognized as unique, and we should be able

to compute the false positive rate after each such addition. This is sufficient

information to compute the post facto expected hash omissions. To predict

the expected hash omissions a priori, we would need to know how many

states will be seen, which requires knowledge of the state space size and

expected transitive omissions. This information is usually not available. My

formula predicting hash omissions does, however, allow us to examine the

space of expected accuracies based on hypothetical numbers of states seen.

I take a different approach than others have in choosing the best struc-

ture when the state space size is unknown. Essentially the only other work

examining this case is Holzmann’s work on bitstate hashing (e.g. [40]).

Holzmann focuses on optimizing the accuracy of the worst case: when the

state space size is so large that we would not be able to explore more states

in the same amount of memory even if the state space were larger (assuming

non-heuristic, over-approximate techniques of course). In effect, this leaves

a wide range of cases with much worse accuracy than is possible. In that

sense, his solution is specialized for the case of extremely tight memory. I

believe a truly general solution should be judged by the “farthest” from opti-

mal its expected accuracy can be, among all possible numbers of states that

might be encountered at run time while remaining in a fixed memory space.

This requires notions of optimality and distance from optimal.

Space lower-bounds for the non-heuristic, potentially over-approximate

visited set problem give us a notion of optimal compactness. Except in re-

stricted cases, classical solutions are asymptotically far from optimal. The

lower bounds point to two important aspects of solutions that are asymp-

totically near optimal. First, information must be encoded in the location of

data within the structure, meaning any solution in which each full descriptor

appears in memory is not asymptotically compact. Second, pointers cannot

be used, because in that case the metadata could asymptotically dominate

14 CHAPTER 2. OVERVIEW OF DISSERTATION

the payload data. I have found references for most of the space bounds

I derive for this problem (e.g. [13]), but I put them into a more unified

framework.

Distance from optimality should be based on memory required, not di-

rectly on expected accuracy. Motivating this choice is the challenge of com-

paring perfect accuracy to imperfect accuracy. Conceptually, the “distance”

between 0 expected hash omissions and 0.01 expected hash omissions is

much greater than between 0.01 and 0.02. 0.02 is about twice as likely to

omit any states as 0.01, but 0.01 is infinitely times as likely as 0. I believe

the right way to bridge this divide is instead to examine the theoretical min-

imum memory required to achieve the expected accuracy and compare that

to the memory used/available. I call the ratio of these two competitive ac-

curacy and use this as my notion of how “close to optimal” a solution is for

each number of states.

Between “flexible” structures, which excel in worst case competitive ac-

curacy for an unknown number of states, and “inflexible” structures, which

excel in best case competitive accuracy for a known number of states, is a

spectrum of solutions that vary in what I call dynamic flexibility. This sug-

gests that if an estimate of the reachable state space size is available, the

best choice might depend on how precise we believe that estimate to be.

I give a formal definition of dynamic flexibility as a strict partial order on

data structure configurations, based on one yielding acceptable competitive

accuracy in a superset of the cases of the other. Different configurations of

the same structure are typically incomparable in this way because configu-

ration usually shifts around the range of acceptability rather than narrowing

or widening it. Different structures, however, often have inherently differ-

ent dynamic flexibilities. I show that my adaptive Cleary tables are more

flexible than Bloom filters (bitstate hashing), which are more flexible than

compacted hash tables (hash compaction).

2.2. BLOOM FILTERS (BITSTATE HASHING) 15

2.2 Bloom filters (bitstate hashing)

As a visited set, the Bloom filter [5] is unmatched in enabling fast explo-

ration of most of an enormous state space. In explicit-state model checking,

the approach was popularized by Gerard Holzmann under the names “su-

pertrace” [37] and “bitstate hashing” [40]. The idea is that the visited set

memory is treated as a bit vector, each state gets hashed to some preset

number (k) of indices, and the bit at each index gets set to “1” when that

state is visited. If any of the bits at indices associated with a state are still

“0”, it has not been visited, but some states that have not been visited will

have all of their bits set to “1” from other additions. Thus, the structure is

an over-approximation of the visited states.

2.2.1 Optimization

In this dissertation, I show how to choose k to minimize the expected hash

omissions, assuming the number of states to be encountered is known. Oth-

ers have shown how to choose k to minimize the final false positive rate,

which is more appropriate in applications that do not use the Bloom filter

as a visited set. I observe that optimizing according to the less appropriate

criteria can result in up to 32% higher expected hash omissions.

2.2.2 Speed

I also describe a Bloom filter construction that virtually eliminates the cost

of computing more hash values for k larger than two or three. Before our

work on the subject [24, 23], it was widely believed that hash computation

had to be linear in k. Since hash computation is a dominant cost of explicit-

state model checking, users avoided Bloom filters with k greater than two or

three even if it would give better accuracy per run [40].

One can compute two or three indices using independent hash functions

and derive the rest using simple, fast arithmetic on these. Double hashing is

16 CHAPTER 2. OVERVIEW OF DISSERTATION

such an algorithm, but that scheme has weaknesses when applied to Bloom

filters. I describe, analyze, and quantify the accuracy problems associated

with double hashing and describe two main alternatives. My enhanced dou-

ble hashing scheme for Bloom filters corrects the issues with double hashing

by making near-optimal use of two indices of hash information. My triple

hashing scheme technically has the same problems as double hashing, but is

much closer to the accuracy of a standard Bloom filter simply by using three

indices worth of hash information, which is often more costly to compute.

A critical aspect of such schemes is the limited independence/entropy

among the computed indices, and I analyze the impact of that by analyzing

what I call the fingerprinting Bloom filter. My analysis shows that the amount

of entropy in the computed indices can be reduced greatly, to reduce hash

computation, with negligible impact on accuracy. In fact, testing shows that

the accuracy of the enhanced double hashing scheme is predicted rather

precisely by the fingerprinting Bloom filter analysis.

Even though the fingerprinting Bloom filter seems to be the ideal for

working with limited hash information, naive approaches using simple arith-

metic can have noticeably better accuracy in some specific cases. I explain

this with better models for those kinds of Bloom filters, namely the hash-

extending and hash-reusing Bloom filters, with accompanying analysis. The

hash-reusing Bloom filter is actually the kind of Bloom filter utilized by my

adaptive storage scheme, so its analysis is useful there.

2.2.3 k = 3 usefulness

From the standpoint of coverage (proportion of states visited), a Bloom filter

setting three bits per state is usually close to best. Notice how the k = 3

Bloom filter in Figure 2.1 rarely omits a large portion of its state space—say

more than 10%. This is the default for SPIN’s BITSTATE mode. Using more

than three can cause the Bloom filter to become excessively saturated in the

2.2. BLOOM FILTERS (BITSTATE HASHING) 17

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

510152025303540

Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Theoretical lower bound
k=3 Bloom filter
k=8 Bloom filter
k=15 Bloom filter
k=22 Bloom filter

30,20,10 bit Compacted table

Figure 2.1: Comparison of inaccuracy of Bloom filter and compacted table
configurations with the theoretical optimal. Lower is better. This essentially
shows the expected hash omissions for various numbers of states seen, using
various data structure configurations, but the axes are chosen to be indepen-
dent of the actual magnitude of memory or states. Looking instead at the
proportion of states expected to be hash omissions vs. the ratio of memory to
states seen, these “asymptotically compact” solutions quickly converge to these
results. “Theoretical lower bound” assumes states are taken from a universe
large enough not to permit exact storage near the domain of this graph. “k = 3

Bloom filter” shows the accuracy of the standard bitstate approach over the
whole span. Other results are truncated to the area around where they are
best. k = 22 is the best Bloom filter configuration when 30 bits is the best com-
pacted table configuration, k = 15 for 20 bits, and k = 8 for 10 bits. The Y axis
spans twelve orders of magnitude. The X spans about two orders of magnitude.

18 CHAPTER 2. OVERVIEW OF DISSERTATION

case of many states. Using fewer can starve the search before reaching the

number of states the Bloom filter is optimized for. I call using a k = 3 Bloom

filter the “standard bitstate approach,” because it is hard to beat in terms of

fast falsification—finding errors quickly.

A problem with this notion of “close to best” is that 99% coverage is

“close to” 99.99% coverage. In terms of finding errors, 99% is about 99%

as effective as 99.99%. In terms of demonstrating error-freedom, 99% is

about a hundred times more likely to overlook an error than 99.99%. This

is roughly the difference between using a k = 3 Bloom filter and 16-bit

hash compaction when there are about 16 bits per state in the visited set

(assuming some transitive omissions). The difference is more profound if

more memory is available per state; at 32 bits, for example, the difference

in expected omissions is a factor of 100 000, even though the k = 3 Bloom

filter would usually cover more than 99.9% of the state space.

The most important reason for recognizing accuracy differences that tend

to be minute in terms of coverage is that, in practice, we do not know the

actual coverage of a search. If we knew that every k = 3 bitstate search

that terminated having visited one state for every 16 bits of the Bloom filter

had coverage greater than 99% (with high probability), then one should

be rather convinced of error-freedom after a few runs of that. Without a

solution to the transitive omission problem, however, we cannot be sure of

that. Less than 1% hash omissions among encountered states may have led

to omission of 90% of the reachable state space, and we do not know the

likelihood of such a case for a given model, especially in the presence of

reductions (partial order and/or symmetry). We do know that reducing the

1% hash omissions to 0.01% will (in expectation) reduce total omissions

and increase coverage.

2.3. COMPACTED HASH TABLES (HASH COMPACTION) 19

2.2.4 Usefulness of other configurations

When a rough estimate of the reachable state space size is available, a Bloom

filter optimized for that estimate is a reasonable choice, because of its rea-

sonably good dynamic flexibility. Notice how the k = 22, k = 15, and k = 8

curves in Figure 2.1 (left to right, each truncated) are each moderately close

to optimal over a wide range. If the estimate is off by a sizable factor, though,

the best configuration is much better.

It is also the best known practical choice when the hash factor (visited

set memory per visited state) is less than about 12 bits per state. Notice how

the 10-bit compacted hash table in Figure 2.1 is never better than the k = 8

Bloom filter. If the estimate is very good and the hash factor is expected

to be greater than 12 bits per state, then the accuracy of a compacted hash

table is likely to be higher.

2.3 Compacted hash tables (hash compaction)

In contrast to their low dynamic flexibility, compacted hash tables have re-

markable peak competitive accuracy, thanks to a clever way of probabilis-

tically encoding information into the location of values in the table. These

hash tables are like typical open-addressed hash tables except that informa-

tion used to build them is lost while building them, but only a probabilis-

tically small amount of that information. In particular, the starting probe

location is computed independently of the value to store; thus, the starting

probe location of a stored value cannot be determined definitively just by

looking at the table. It can, however, be narrowed down to a limited num-

ber of possibilities that would not have placed that value elsewhere first.

Though that line of reasoning is complicated, the implementation of Stern

& Dill’s “hash compaction” scheme [77, 78] is almost indistinguishable from

an open-addressed hash table using double hashing [34] and (preferably)

ordered hashing [2].

20 CHAPTER 2. OVERVIEW OF DISSERTATION

There are some subtleties in combining double hashing, ordered hashing,

and independent computation of starting location that I believe I describe

more clearly than others have. In particular, the double hashing is noticeably

less effective than random probing in this case because we have to make the

distance between probe locations a function of the value stored. If we do

not, we cannot relocate stored values and ordered hashing is essentially

precluded. An exception is knowing in advance all the elements that will

be added; I show that in that case, a static compacted hash table with a

lower false positive rate can be constructed. Despite the probing issue, there

is a significant accuracy benefit to using ordered hashing in the dynamic

structure.

I show that Stern/Dill hash compaction schemes are asymptotically near

optimal if they are filled only to some constant occupancy less than 100%.

Experiments show that filling to between 98% and 99.8% is most effective,

meaning the size of each cell should be slightly smaller than available mem-

ory divided by number of cells to be occupied (if known) to maximize accu-

racy. Even when filling up, the expected, amortized speed of a compacted

hash table as a visited set is quite good. As in Figure 2.1, the structure is

closest to optimal just before it fills up and the omissions spike.

The structure is dynamically inflexible because (a) it is not that compet-

itively accurate when far from full and (b) it is practically useless once it

is full. This is evident in Figure 2.1 because each compacted hash table is

only better than the competing Bloom filter in a small range of cases, if at

all. After the structure fills up, we assume that all remaining states are omit-

ted, because the only possible alternative is to eject existing states, which

is outside the scope of this dissertation because it can drastically slow the

search.

Nevertheless, if one has a close estimate of the state space size and there

are more than about 12 bits of memory per state available, a compacted

hash table is likely the best choice because of its peak competitive accuracy.

2.4. ADAPTIVE CLEARY TABLES 21

At 30 bits per state, its expected hash omissions are more than ten times

smaller than the best Bloom filter.

2.4 Adaptive Cleary tables

The central practical contribution of this dissertation is a uniquely capable

solution to the visited set problem when the state space size is completely

unknown. I have extended a compact hash table by John G. Cleary [14]

with an algorithm that adapts it quickly and in-place to accommodate more

elements, by throwing away information about each visited state. The result

is the only known design that actually has a worst-case competitive accuracy

(among all practical cases). I describe two variants: a “fast” variant that

can be made to stay within a memory factor of 2.5 from optimal, and an

“accurate” variant that is within a factor of two.

Because of its favorable access pattern to memory, the “fast” variant is

faster than popular alternatives in many cases, even after adapting the entire

visited set several times. Any access to a Cleary table requires only one ran-

dom access to memory; the rest is local to that area of memory. This imparts

a significant advantage when the structure occupies most of main memory

and several processor cores are contending for access to main memory.

2.4.1 Exact reduction

A Cleary table is fundamentally an exact representation for a subset of some

finite universe, but it is simple to use it to over-approximate a set from a

larger universe. It is just a matter of storing a set of hashes. Others have

established that this general approach to over-approximating a set can be

asymptotically near optimal, assuming the underlying exact set is near op-

timal and the elements are drawn from an infinite or practically infinite

universe [13, 65]. Over-approximating a subset of a finite universe is more

nuanced, and I examine closely two reductions that arise naturally to solve

22 CHAPTER 2. OVERVIEW OF DISSERTATION

that case. One approach is observably more accurate in some cases and

provably at least as accurate in almost all practical cases. In fact, the more

accurate reduction is needed for my adaptive storage scheme to meet the

claimed accuracy bound, and only because of some very rare cases. Both ap-

proaches are, however, within a constant number of bits per added element

of optimal for the general over-approximation problem, which makes them

“asymptotically compact” for my purposes.

2.4.2 Cleary tables

Cleary tables are similar to compacted hash tables except that metadata and

the arrangement of entries enable the starting probe location, the home ad-

dress, of each to be determined. This means that the descriptor of each added

element can be reconstructed by combining the stored part with its home ad-

dress. Cleary’s inception of the tables implicitly required three bits of meta-

data per cell to match entries with their home addresses, but I show how

to reduce that to two bits. When using the table as an over-approximation,

my one bit of savings in metadata enables one more bit of hash data to be

stored for each element, which cuts the expected hash omissions in half.

Cleary tables use a special bidirectional linear probing that keeps all el-

ements in the table in unsigned numerical order of their descriptors. This

has several implications. First, look-ups can quickly degrade to linear search

if the descriptors are not uniformly distributed. For over-approximate stor-

age, hashes are already uniformly distributed. For exact storage, descriptors

can be passed through a randomization function (1:1 hash function). Even

with uniform descriptors, the structure is subject to clustering; beyond about

90% occupancy, operations are unacceptably slow. An advantage of this de-

sign is that only one random access to memory is required per operation;

the rest are streaming accesses near that one. Also, the choice of maximum

occupancy allows almost limitless trading between space and time.

2.4. ADAPTIVE CLEARY TABLES 23

2.4.3 Adaptation

Because of the exact information it contains and the convenient encoding,

the Cleary table has enormous potential flexibility. As-is, the Cleary table

has an accuracy curve that makes it similarly as inflexible as the compacted

hash table. Unlike the compacted hash table, a Cleary table has all the

information needed to construct another configuration that accommodates

more elements in the same amount of memory, by storing a smaller hash

of each element. Better still, because the values are stored in order, it is

possible to convert from one configuration to the other in place, with an

elaborated scan through the structure. If we only remove some of the final

bits of each hash, the order of elements in the old and new structure are the

same.

The practical challenges of implementing such conversions are big. Even

the simplest case, cutting the size of each cell in half, is complex. This

doubles the number of home addresses, meaning that one bit that was stored

for each entry becomes implicit in its new home address. A key to such

conversions is a traversal that guarantees all entries between an entry and

its home address will be processed before that entry is processed. This means

that when we convert each element, its new location is available, because it

can only be closer to the home address. The resulting conversion algorithm

requires onlyO(1) auxiliary space and makes no random accesses to memory

that are not expected to be cached.

Essentially the same algorithm can convert a Cleary table into a kind

of Bloom filter. This is helpful because Bloom filters are more accurate than

over-approximate Cleary tables when available memory is below about 9 bits

per state. The resulting Bloom filter must have locality among its indices,

which diminishes its accuracy somewhat. Conveniently, this type of Bloom

filter is a hash-reusing Bloom filter, described above. The hash-reusing anal-

ysis is applicable here.

24 CHAPTER 2. OVERVIEW OF DISSERTATION

2.4.4 Designs

My “fast” adaptive design depends only on splitting cell sizes in half and

converting to a special k = 2 Bloom filter. It is at least as accurate as the

optimal for 40% as much memory, as shown in Figure 2.2. Basically, we

start out using a Cleary table with a power-of-two cell size that allows entire

state descriptors to be stored. As each configuration reaches 85% occupancy,

we cut its cell size in half. After the 8-bit Cleary table, we convert to a

Bloom filter setting two bits in adjacent bytes for each state. This design

is consistently faster than the standard bitstate approach before the first

adaption and after adapting to the special Bloom filter, and not much slower

in between.

My “accurate” adaptive design has an intermediate step between each

power-of-two cell size for the Cleary tables. These intermediate configura-

tions pack three entries in the space that was previously taken up by two

cells. That hack is sufficient to be at least as accurate as is optimal for 50%

as much memory, as shown in Figure 2.2. This design is usually no more

than 10% slower than the “fast” design.

In practice, it would require lots of hashing to implement these schemes

completely, which would make them slow. Using at most two machine words

per cell has observably the same effect with low hashing requirements. The

probability of any omissions for a Cleary table using two words per cell (at

least 64 bits) is at worst one in billions. To some people, however, the psy-

chological benefit of exact storage is important when possible. Fortunately,

we can also store states exactly with low hashing requirements; only the

configurations between exact and 64 bits per cell require lots of hashing.

My claims of being always within a certain memory factor of optimal

cover all practical cases but are not, in theory, universal. One assumption is

that the available memory is not close to being able to represent the universe

explicitly with a bit table. Another is that the available memory is not trivial

2.4. ADAPTIVE CLEARY TABLES 25

1e-20

1e-15

1e-10

1e-05

1

1020304050607080

Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 50% Mem
Lower bound, 40% Mem

Accurate variant
Fast variant

Figure 2.2: Comparison of inaccuracy of adaptive storage designs with lower
bound. Lower is better. This uses the same axes as Figure 2.1, but over greater
spans, to compare the expected accuracy of my adaptive visited set designs to
the optimal for various memory factors. Expected omissions for my “accurate”
design are always below the minimum for 50% as much memory. Expected
omissions for my “fast” design are below the minimum for 40% as much mem-
ory. It is easy to see where the cell size conversions take place. For example,
the “fast” converts from 64 to 32 bits per cell at 64/0.85 ≈ 75 bits per state. It
later converts to 16, to 8, and then to a special k = 2 Bloom filter at around
10 bits per state. Zooming in on the tail end would show the designs staying
below their claimed bounds.

26 CHAPTER 2. OVERVIEW OF DISSERTATION

in size, at least 8KB. Finally, the number of states reached should be less

than the number of bits of memory available. As I describe in detail, these

assumptions are very reasonable in practice. For example, Holzmann has

repeatedly found that setting two bits per state in a Bloom filter (k = 2) is

more accurate than setting just one (k = 1) even if the model has many more

states than there are bits of memory available. This seems counter-intuitive

but is a consequence of the search starving itself of new states to explore

before it has seen enough states for k = 1 to be best.

I validate my claims on the adaptive storage designs as follows: First,

using numerical computation, I show that the claims hold in many specific

cases, based on the formulas for expected performance (as in Figure 2.2).

Second, I empirically validate my implementation against those formulas,

in many specific cases. Third, I give mathematical arguments that those

specific cases generalize to all cases at least as large.

2.4.5 Active state matching

Cleary tables, and all structures based on cells, are well-suited to tracking

which visited states are active: those states currently on the DFS stack or BFS

queue. This knowledge is required for typical implementations of partial-

order reduction. Using a bit of each cell to indicate whether an associated

state is active eliminates the need to represent them in a separate structure,

which can constitute significant additional costs in time and space. Getting

this to work with adaptation, including adaptation into a Bloom filter, has

a few complications, but I design around them effectively. Integrated stack

matching improves the speed of my adaptive approach compared to the stan-

dard bitstate approach, and often improves space utilization/requirements

as well.

CHAPTER 3

The State Storage Problem

Here I describe a basic problem that is an abstraction of the over-approx-

imate state storage problem for explicit-state model checking. The basic

problem is easier to characterize and analyze, and forms the basis for opti-

mizing solutions to the motivating problem.

Bibliographic Notes and Contributions As my citations throughout indi-

cate, the essential ideas and conclusions of this chapter have previously been

identified and reached in Holzmann’s analyses of bitstate hashing (Bloom fil-

ters) [40, 42]. My main contributions are vocabulary to talk about the prob-

lem in precise terms, and the precise analyses they facilitate. For example,

I first used the terms “hash omission” and “transitive omission” in a 2004

SPIN Workshop paper [24], and they enable me to write exact formulas for

concepts like “a priori expected hash omissions.”

My treatment of the problem is related to the field of online algorithms,

in which input is discovered over time [6, 1]. By only considering non-

heuristic approaches to state storage, the particular states are not important,

only the number reachable. My notion of “competitive accuracy” is naturally

related to competitive analysis of online algorithms.

27

28 CHAPTER 3. THE STATE STORAGE PROBLEM

3.1 Definition

The basic problem is that of a dynamic set representation, parameterized

over a universe of elements to draw from, U , and a memory limit, m bits.

Here is more detail:

Problem 3.1. Use up to m bits of memory to represent a subset of U to which

one can ADD and QUERY elements, where

• QUERY must return positive for all elements of U that have been ADDed.

• QUERY preferably returns negative for any element of U that has not been

ADDed.

• ADD and QUERY operations should be fast.

This is an optimization problem because of the “preferably” and “should”

aspects. A technically valid solution is to keep track of no information and

always return positive from QUERYs. This is not likely to be a very useful solu-

tion, but that could depend on the value placed on the various performance

dimensions (see below).

Because some elements that have not been added might return positive

from a QUERY, the set actually represented by the data structure might be

larger than the set of elements added. If the added set is V and the rep-

resented set is W , then V ⊆ W ⊆ U . Elements in W \ V are called false

positives, because they return positive from a QUERY even though they have

not been added.

Note that the problem does not require support for removing elements,

as the motivating problem does not.

3.2 Usage patterns

It will be important in analyzing solutions to Problem 3.1 to draw a distinc-

tion between two usage patterns:

3.3. SINGLE CASE PERFORMANCE DIMENSIONS 29

Definition 3.2. The visited set usage pattern for solutions to Problem 3.1 is

followed if all negative QUERYs are followed immediately by an ADD of the same

element, meaning V includes every element ever QUERYed. The general usage

pattern has no such restriction; elements can be QUERYed without ADDing.

The visited set usage pattern is important to my thesis, because it calls for

different optimization criteria, and the motivating problem (from explicit-

state model checking) follows that usage pattern. However, the optimization

criteria for the visited set usage pattern depend on those for the general

usage pattern.

3.3 Single case performance dimensions

At a particular point in time, we evaluate a particular instance of a data

structure solving Problem 3.1 based on these parameters/performance di-

mensions. (Each is listed with the “higher is better/more difficult” name,

possibly with a “lower is better/more difficult” name in parentheses.)

Magnitude refers to how many items have been ADDed to the structure,

but this definition is ambiguous. When we need to be precise, we will use

one of two distinct interpretations:

Definition 3.3. Let v = |V | be the number of unique additions to the struc-

ture, the number of unique items either explicitly ADDed to the structure or that

would have been ADDed if not for a false positive QUERY. Let n be the number of

affecting additions to the structure, the number of additions that would have

QUERYed to negative immediately before being ADDed; thus, the structure was

modified so that QUERYs of each would return positive.

Compactness (Space) refers inversely to the memory footprint. It could

refer to the maximum allowed memory, m bits, or to the amount actually

used, which might be smaller. The solutions we look at use virtually all

available space immediately.

30 CHAPTER 3. THE STATE STORAGE PROBLEM

Universe Size refers to |U |, which must be finite or countably infinite.

This is a static parameter that mostly serves to determine the compactnesses

and magnitudes for which perfect accuracy is achievable. When accuracy is

less than perfect, this parameter is often presumed infinite, with negligible

effect on information-theoretic optimality. (See Chapter 4.)

Accuracy (Inaccuracy) refers to how closely W approximates V , or how

close that approximation has been over the structure’s lifetime. By the as-

sumption that V ⊆ W , we are only considering cases of over-approximating

or exactly representing the set of visited states. For brevity, I often refer to

representations that strictly over-approximate the visited set (V ⊂ W) as

approximate storage or inexact storage. The term “inexact storage” also

suggests the dichotomy with exact storage (V = W).

Specifically, we use two related indicators of inaccuracy: we use the false

positive rate for the general usage pattern and omissions for the visited set

usage pattern. Detailed definitions of these are in Section 3.6.

In addition to speaking about these accuracy metrics in absolute terms,

we are also interested in how close to optimal the accuracy is for a given

magnitude, compactness, and universe size. (See Chapter 4 for derivation

of relevant lower-bounds.) We run into trouble, however, if we base this on

accuracy ratios, because the ratio between perfect accuracy and imperfect is

infinite. However, the memory required to achieve any non-zero accuracy

is always finite and non-zero. This gives us a useful metric for differences

in accuracy: the ratio in memory required to achieve them. We can there-

fore use memory ratios to gauge a solution’s “distance” from the theoretical

optimal:

Definition 3.4. Let m be the memory required by a structure and m̆ be the

information-theoretic minimum for a structure with the same magnitude, ac-

curacy, and universe size. The competitive accuracy is m̆/m. Competitive

inaccuracy is the inverse, m/m̆.

3.4. SINGLE CONFIGURATION PERFORMANCE 31

That definition depends on an accuracy metric, such as false positive

rate or number of omissions, and a magnitude metric, such as number of

affecting additions or unique additions.

Speed (Time) we can talk about several ways: we can talk about the

absolute time of a QUERY or ADD operation in a particular implementation on

a particular machine, or we can talk about the asymptotic time complexity.

In either case, we can consider worst case, mean, median, or sometimes

amortized time cost in either a worst case structure, a median structure, or

averaged over all structures.

3.4 Single configuration performance

The existence of space lower-bounds for given magnitude and accuracy (see

Chapter 4) points to an inherent trade-off between these performance vari-

ables, so optimizing one of these based on the other two seems like the best

way to get the most competitive accuracy. But this is only sufficient if we

know rather precisely what the magnitude will be at run time. In many

applications, the number of elements added to the structure cannot be pre-

dicted well, and restarting with a different configuration is likely to be costly.

Thus, another way of evaluating a configuration of a set data structure

is by its dynamic flexibility, or competitive accuracy over a range of magni-

tudes. It is difficult to define precisely what it means for one data structure

configuration to be more flexible than another, but here I present the most

general definition I have been able to come up with, which is only parame-

terized by the accuracy metric and magnitude metric.

Definition 3.5. Let a(A, i) be the expected competitive accuracy1 of data struc-

ture configuration A after i additions. Let R(A, q) = {i : a(A, i) ≥ q}. R(A, q)

is therefore the region in which the data structure is expected to achieve com-
1Because competitive accuracy is not a linear function of the accuracy, computing its

expected value is difficult. Using instead the competitive accuracy for the expected accuracy,
which is easier to compute but more difficult to say, would not be tangibly different here.

32 CHAPTER 3. THE STATE STORAGE PROBLEM

petitive accuracy of at least q. Data structure configuration A is more dy-

namically flexible than B iff there exists competitive accuracy q such that

R(A, q) ⊃ R(B, q) and for all q′ ≤ q, R(A, q′) ⊇ R(B, q′).

In other words, A is more dynamically flexible than B iff there is a com-

petitive accuracy that A reaches at least whenever B does, and the same is

true for every competitive accuracy worse than that. Also, in at least one of

those cases, A must reach that competitive accuracy in more cases.

This means that if we lower our competitive accuracy standards low

enough, A is expected to be acceptable in at least as many cases as B would

be, and potentially more.

Observe that this definition is a strict partial ordering of data structure

configurations solving Problem 3.1, since it is irreflexive, asymmetric, and

transitive. This means that in many cases, dynamic flexibilities will be in-

comparable. This is often the case for different configurations of the same

data structure; they tend to have a remarkably similar competitive accuracy

curve scaled differently in magnitude space.

Dynamic flexibility implicitly includes overflow potential, the probabil-

ity distribution of magnitudes at which the data structure is not able to ADD

another element or is at a 100% false positive rate. These two cases have

different meanings: the former means that the data structure is unable to

adapt so that a QUERY of the requested element returns positive; the latter

need not adapt to satisfy the ADD requirement. We group these two together,

however, because one can easily adapt a data structure that could encounter

the possibility of not being able to ADD another element to one that has a

100% false positive rate simply by adding an “overflowed” bit to the struc-

ture, which indicates all QUERYs should return positive.

The counterpart to dynamic flexibility is peak competitive accuracy,

which is simply the highest competitive accuracy reached by a data structure

configuration over all magnitudes. Note that these two are not opposites;

an ideal structure would have universally very high competitive accuracy.

3.5. DATA STRUCTURE PERFORMANCE 33

Instead, there seems to be a design trade-off between these two (a thesis of

this dissertation), and different applications could demand one much more

than the other, or call for a balance of the two.

On occasion, I will use “flexibility” to refer to “dynamic flexibility” for

brevity. I prefer “dynamic flexibility,” however, to emphasize that it is a

property of individual configurations of a data structure, and does not refer

to the static configurability of the data structure.

3.5 Data structure performance

We will also compare data structures based on their configurability, which

generally refers to how well the static configuration parameters of a data

structure allow it to satisfy various needs. Here are some examples:

• Speed vs. Compactness/Accuracy/Magnitude. Some data structures

have a natural way of trading speed for higher compactness/accuracy/

magnitude, while others only improve negligibly given more time. But

if a data structure has both very high speed and very high compact-

ness/accuracy/magnitude, such as a software implementation of hash

compaction (see Chapter 7), this type of configurability is irrelevant.

• Satellite information. This represents an addendum to Problem 3.1

by generalizing from sets to partial maps. A structure supports satellite

information if each element added is also associated with a fixed-size

piece of information that can be recalled and updated ad infinitum.

Some structures, including most Bloom filters, have no natural way to

add satellite information, but the feature is important in many applica-

tions, including computation of ample sets for partial-order reduction

of an explicit-state search (see Section 11.2.3).

We will make the simplifying assumption that satellite data is com-

pletely random (uniformly distributed) and, thus, the space required

34 CHAPTER 3. THE STATE STORAGE PROBLEM

for representing it cannot be optimized beyond the naive approach of

associating the appropriate amount of space with each element to be

added. This keeps consideration of satellite information from polluting

the analysis of space lower bounds for Problem 3.1.

3.6 Accuracy details

3.6.1 False positive rate

The false positive rate is, informally, the proportion of unADDed elements

that will QUERY to positive (as a false positive). When U is finite, this is easy

to formalize:

If |U | <∞, f
(def)
=
|W \ V |
|U \ V |

(3.1)

The false positive rate is undefined if U \ V = ∅, and rightly so.

Potentially probabilistic sets, however, are quite often used over a count-

ably infinite universe, and authors report the false positive rate over that

universe. Mathematically, this seems dubious because there is no single con-

cept of proportion over countably infinite sets. In particular, there is no

non-zero, finite, and uniform (permutation-invariant) measure over the nat-

ural numbers, just as there is no uniform probability distribution over the

natural numbers.

We can, however, define the false positive rate if we’re given an ordering

of the universe for which the false positive rates of finite prefixes converge.

We shall assume from now on that countably infinite universes come with

an ordering for determining the false positive rate. In practice, the natural

“smallest-first” ordering will suffice. We define U0, U1, U2, . . . to be prefixes of

that ordering. Specifically, |Ui| = i and Ui ⊂ Ui+1 for i ∈ N, and
⋃∞
i=0 Ui = U .

We can use those prefixes to define the false positive rate:

3.6. ACCURACY DETAILS 35

If |U | =∞, f
(def)
= lim

i→∞

|(W \ V) ∩ Ui|
|(U \ V) ∩ Ui|

= lim
i→∞

|W ∩ Ui|
i

(3.2)

The equality is justified by the finiteness of V and our assumptions about

the prefixes.

Note that in theory, the order matters in the resulting false positive rate,

as long as |W | =∞ and |U \W | =∞. In these cases, for example, we could

modify an ordering to yield half the false positive rate by spreading out

occurrences of elements in W so that they appear only half as often as previ-

ously. In practice, however, a natural “smallest-first” ordering feeds standard

hash functions in such a way as to get the anticipated limit behavior.

It is possible for the limit not to exist for a particular ordering, which

would make the false positive rate undefined for that ordering. Consider

U = N with the natural ordering and W = {v : blog10 vc ≡ 1 (mod 2)}.

In this case, there is no limit proportion of W to U , because it fluctuates

between roughly 0.9 and 0.1 ad infinitum. This would be absurd behavior

for a hash function feeding a data structure, though, so it is not really a

practical concern.

The point here has been to have a mathematical characterization of what

it means for a particular data structure instance to have a particular false

positive rate, and we have done that for both the finite and infinite cases.

Note that lots of previous literature is loose with the term “false positive

rate”, using it to refer to the median false positive rate over a space of cases.

In fact, the false positive rate will almost always follow a non-trivial prob-

ability distribution rather than be some constant value for some number of

unique additions. The variance, however, is typically small enough that the

median is accurate enough for most purposes.

36 CHAPTER 3. THE STATE STORAGE PROBLEM

3.6.2 Omissions

The visited set usage paradigm calls for a different inaccuracy metric, be-

cause the final false positive rate does not tell us much about how accurate

the search was overall. Ideally, we would be able to determine the probabil-

ity that an assumed error was overlooked by the search. There are problems

with computing that, including computing even the proportion of states that

were omitted from the search. Nevertheless, we can justly compare data

structures using accurate estimates of “hash omissions,” which are closely

related to the potential for overlooking errors.

A hash omission occurs when an element/state that has not yet been

added/visited is presumed previously added/visited because of a false posi-

tive QUERY. Without some kind of oracle, we don’t know exactly how many

hash omissions a data structure has had, for if the data structure knew when

it was making an omission, we would have it avoid doing so! But we can

usually compute the expected number of hash omissions and the probability

of any hash omissions.

The rest of the omissions from a lossy search are transitive omissions,

states that are never reached because they are only reachable through hash

omissions. The total omissions from a search, therefore, is the sum of the

hash omissions and the transitive omissions. If there are no hash omissions,

there cannot be any transitive omissions; thus, probability of any hash omis-

sions is also the probability of any omissions overall.

Implementation note: Some model checkers only check properties of

states (vertices) and not of the intervening transitions (edges). Many of

those checkers validate each state as it is seen, before checking against the

visited set, rather than as it is visited, after the visited set indicates it is new.

In such checkers, because the hash omissions are seen, only the transitive

omissions represent the possibility of overlooked errors. In any case, our

goal will be to minimize the possibility or quantity of hash omissions, as

3.6. ACCURACY DETAILS 37

soon explained.

3.6.3 The Transitive Omission Problem

The complete relationship between these two types of omissions is compli-

cated because it depends on the structure of the graph being explored. Fig-

ure 3.6.2 has an example graph that demonstrates how uncertain the num-

ber of transitive omissions is, even given statistics such as number of states

visited, number of hash omissions, and branching factor. There is a chain

of a million nodes connecting Subgraph A to Subgraph B; these are “criti-

cal” because each must be along any path from Subgraph A to Subgraph B.

Thus, if we expect just one hash omission per million visited states, we could

expect to transitively omit all of Subgraph B, which could be enormous com-

pared to Subgraph A. Also, the chain is only 1% the size of Subgraph A, so it

doesn’t contribute significantly to many of Subgraph A’s structural statistics,

such as branching factor.

To reliably estimate the coverage of a search, the proportion of the reach-

able state space visited, we would need to solve the problem of estimating

transitive omissions. We will soon see why this is not needed for this disser-

tation, but it is worth mentioning some anecdotal knowledge on the subject.

Before widespread use of partial-order reduction [33, 47], Holzmann ob-

served that a general rough estimate was one transitive omission per hash

omission [40], and that matches our observations in using SPIN [42]. We

can expect more for poorly connected problems (less than two edges per

state) and fewer for highly connected problems (greater than three or four

edges per state). We incorporated some heuristics like this into 3SPIN for

rough coverage estimation. A shortcoming is that we have also observed out-

lying cases with orders of magnitude more transitive omissions than these

heuristics expect or most random trials produce.

We also do not know exactly how partial-order reductions affect these

38 CHAPTER 3. THE STATE STORAGE PROBLEM

10 states in
critical path

6

. . . .

??10 states

10 states8
Subgraph A

Subgraph B

Figure 3.1: State graph severely
affected by the transitive omission
problem. If any of the 106 states
critical to reaching the bottom sub-
graph is a hash omission, that en-
tire subgraph will be omitted tran-
sitively. Note: the back edges from
the critical states make the example
more portable because some check-
ers only perform state matching at
points with non-determinism.

3.6. ACCURACY DETAILS 39

heuristics. With P.O.R. enabled, we have observed cases in which a search

with omissions explores more states than a lossless search of the same graph.

Since aspects of the reduction are “on-the-fly,” it is conceivable that such a

perturbation could rightfully result in more states being visited. With P.O.R.,

therefore, we cannot attribute all of the difference between states visited

with lossy search and states visited with lossless search to omissions, and we

do not know how to measure how much is contributed by each. A partial-

order reduced state graph is less connected, which, anecdotally, should in-

crease transitive omissions per hash omission, but we have not verified this.

3.6.4 Error omission bound

A paper by Stern and Dill reports to derive a bound on the probability

of omitting an error, taking into account the possibility of transitive omis-

sions [78]. This would seem to better capture the effectiveness of a prob-

abilistic verification run, since the possibility of an error being in the place

you happen to omit a few states is usually quite small.

The problem is that the analysis depends on the diameter (maximum

breadth-first depth) of the graph, which one knows only with the same cer-

tainty that one has explored the state space to its maximum diameter. In

other words, we can really only trust the computed bound on error omission

to extent we are certain we have not omitted any states, in which case it is

not that helpful!

Though it would be nice to be able to use this metric in reporting to

users, we do not know how to bound reliably the probability of omitting a

single error. For this reason, and because for a given graph it is proportional

to the expected omissions, we do not explore this metric any further. Instead

we focus on minimizing omissions.

40 CHAPTER 3. THE STATE STORAGE PROBLEM

3.6.5 Accuracy optimization criteria

Minimizing hash omissions is the best known approach to minimizing the

possibility of overlooking errors, because it is the best known approach

to minimizing total omissions. Others have come to this conclusion also,

namely Holzmann [40], but not so explicitly.

The basic truth that justifies this approach is that every transitive omis-

sion has a hash omission as its root cause. This means that if there are zero

hash omissions from a search, then there are zero transitive omissions. Also,

as observed earlier in the discussion of transitive omissions, the relationship

between hash omissions and transitive omissions tends to be linear.

Even though there might be a better way to ensure errors are found than

to minimize total omissions, until such a method is discovered, it is best to

assume every state has equal potential for revealing an error. This suggests

the approach of minimizing total omissions to minimize the possibility of

overlooking errors.

Even though there might be a better way to minimize total omissions

than to minimize hash omissions, until an efficient such method is discov-

ered, it is best to assume that every state has equal potential for causing

transitive omissions if omitted. This suggests the approach of minimizing

hash omissions to minimize total omissions–and the possibility of overlook-

ing errors.

It is worth mentioning a hypothesis regarding the relationship between

hash omissions and transitive omissions that has failed to show validity in

our testing. The hypothesis was that hash omissions earlier in the search

might lead to more transitive omissions than hash omissions later in the

search. Virtually any conceivable state storage technique concentrates hash

omissions toward the end of the search, but they can vary somewhat in the

degree of that concentration. In terms of choosing one structure over an-

other, this hypothesis has shown no validity. One could construct a synthetic

3.6. ACCURACY DETAILS 41

test to get a better answer, but my testing has convinced me that among rea-

sonable structures, the winner will be the one that minimizes the number of

hash omissions.

Our “best known” metric for inaccuracy is, therefore, expected number

of hash omissions.

3.6.6 More definitions and analysis

Recall that in the visited set paradigm, we consider V to be all v = |V |

unique elements QUERYed, and n is how many of those were recognized as

“new”. Thus, we can formally define the number of hash omissions, o, as the

difference between our two notions of magnitude:

o
(def)
= v − n (3.3)

But as mentioned, this is not a practical formula because we would need

some kind of oracle to know both v and n.

In a specific data structure, however, we can keep track of n and use that

to estimate v and, thus, o. Using a “hat” (as in v̂) to signify the expected

value (or some other estimator) of a variable, we define the post facto ex-

pected hash omissions by this practical variant of Equation 3.3:

ô = v̂ − n (3.4)

To estimate v from n and the history of actual false positive rates, we simply

add for each affecting addition the (real-valued) expected number of unique

additions to generate exactly one affecting addition at the given false posi-

tive rate (fn←i is the false positive rate after i affecting additions; i.e. replace

n by i):

v̂ =
n−1∑
i=0

1

1− fn←i
(3.5)

For example, when the false positive rate is 50%, we expect it to take 2 more

42 CHAPTER 3. THE STATE STORAGE PROBLEM

unique additions to have 1 more affecting addition.

Combining the previous two equations, we have

ô =
n−1∑
i=0

fn←i
1− fn←i

(3.6)

For example, when the false positive rate is 50%, we expect one omission per

affecting addition, because each is expected to be half of any forthcoming

unique additions.

We can also consider predicting the a priori expected hash omissions,

which is the difference between a known v and the expected n that entails:

ô = v − n̂ (3.7)

For each unique addition, the contribution to the total expected affecting

additions is the probability the addition is not an omission, or one minus the

expected false positive rate at that point:

n̂ =
v−1∑
i=0

1− f̂v←i (3.8)

Note that linearity of expectations makes the right hand side the exact ex-

pected value of the number of affecting additions if the expected false posi-

tive rates are exact.

Combining the previous two equations, we have

ô =
v−1∑
i=0

f̂v←i (3.9)

Another inaccuracy performance measure based on omissions is the prob-

ability of any omissions, which is the opposite of (one minus) the probability

of no omissions. (Recall that there are no omissions overall iff there are no

hash omissions.) The probability of no omissions is the probability that the

3.6. ACCURACY DETAILS 43

two types of magnitude are actually equal. The post facto probability of no

omissions is simple, just “the probability I got to these n affecting additions

with just v = n unique additions,” or, “the probability that nothing added

would have QUERYed as a false positive:”

P (o = 0) =
n−1∏
i=0

1− fn←i (3.10)

For the a priori probability of no omissions case, given some number

of states to visit v, we must assume at each step that n = v and factor in the

probability that it stays that way:

P (o = 0) =
v−1∏
i=0

1− fn←i (3.11)

That works for structures for which we know the exact false positive

rates that will arise at runtime given v = n (such as probabilistic sets based

on exact sets; see Chapter 8), but for many structures (such as Bloom fil-

ters, Chapter 6), there is non-zero variance in the false positive rates even

assuming v = n. So in those cases, we can only approximate the a priori

probability of no omissions, using the expected false positive rates:

P (o = 0) ≈
v−1∏
i=0

1− f̂n←i (3.12)

This is an approximation because it’s the product of expectations rather

than the expectation of the product and the events are not independent, as-

suming covariance among false positive rates while adding to the structure.

(It’s hard to imagine a structure that would have variance in false positive

rates but no covariance from addition to addition.) The approximation is

very good, however.

Observe that when close to zero, the probability of any omissions and

the expected number of omissions approximate each other, based on the

44 CHAPTER 3. THE STATE STORAGE PROBLEM

property that for ε1, ε2, . . . close to 0,

1− (1− ε1)(1− ε2) . . . ≈ ε1 + ε2 + . . .

Based on an asymptotic approximation and relaxing certain assumptions,

there is an approximate relationship between the probability of no omissions

and expected hash omissions:

P (o = 0) ≈ 1− e−ô (3.13)

Finally, observe that another piece of evidence can qualify the above pre-

dicted numbers of omissions/unique false positives: the number of positive

queries. Specifically, the number of unique false positive queries cannot ex-

ceed the number of positive queries, but this is typically not helpful due to

“revisitation” of elements/states, which entail positive queries.

CHAPTER 4

Lower Bounds for State Storage

Here I derive and cite information-theoretic lower bounds for memory re-

quired to solve the state storage problem. These give us an optimal to

compare against and, in some cases, help us to understand the nature of

near-optimal solutions. Recall that I am only considering non-heuristic solu-

tions.

Bibliographic Notes and Contributions The results of Corollary 4.3 and

Corollary 4.4 agree with others’ results [13, 65, 11], but my approach is

more unified and, I believe, more elegant. A similar analysis appears in [19,

Appendix C], in which bounds are derived in terms of u (called u), v (called n),

and f (called ε). I find it simpler to use the represented set size, w, instead

of the false positive rate, f , when analyzing the case of finite u.

4.1 Most cases

We now determine by information theory how much space is required to

guarantee being able to represent a set of a particular magnitude with a

particular accuracy from a particular universe. Here we use the false positive

rate as the accuracy metric, so if |U | < ∞, the accuracy is determined by

the trio |U |, |V |, and |W |: the universe size, the visited set size, and the

45

46 CHAPTER 4. LOWER BOUNDS FOR STATE STORAGE

represented set size respectively. We will address the infinite universe case

later.

So that we can use the variables V and W in quantification, let us use

u, v, and w for the universe size, visited set size, and represented set size

respectively. Recall, therefore, that v ≤ w ≤ u.

We consider approximating all possible V for which |V | = v and V ⊆ U ,

but the data structure can use any W for which |W | = w and V ⊆ W ⊆ U .

Therefore, the amount of space required depends on how many subsets of

U of size w are required for each subset of U of size v to be a subset of (at

least) one of those w-sized subsets.

More symbolically, find a smallest set S such that

∀W ∈ S, |W | = w ∧W ⊆ U

∀V ⊆ U where |V | = v,∃W ∈ S where V ⊆ W

S then contains the minimum number of possibilities to represent any

size-v subset of U with an over-approximation of size w. Thus, lg |S| bits of

information are required to pick any one of those possibilities. (I will use lg

to refer to the base-2 logarithm.)

Lemma 4.1. Letting S be constrained as above,

|S| ≥
(
u
v

)(
w
v

)
|S| ≤

(
1 + ln

(
w
v

)) (u
v

)(
w
v

)
|S| ≤

(
uv/w
v

)
Proof The lower bound is simple and well-known: the numerator is the

number of size-v subsets of U . S must contain a size-w subset that covers

each of those size-v subsets. The most size-v subsets that can be covered by

4.1. MOST CASES 47

a size-w subset is the denominator. Thus the quotient is a lower bound for

how many size-w subsets are needed to cover all possible size-v subsets of

U .

The first upper bound was proven by Erdős and Spencer [27], and the

second upper bound comes from a construction by Carter et al [13], who

also observe that neither upper bound dominates the other in all cases [13,

Section 5], so both are useful. �

Theorem 4.2. Let m̆v,u,f bits be the minimum space required to represent any

size-v subset of U (|U | = u <∞) with a false-positive rate of f = w−v
u−v (imply-

ing represented set size w = (u− v)f + v). The following bounds hold:

m̆v,u,f ≥ lg

(
u
v

)(
w
v

)
m̆v,u,f ≤ lg

(
1 + ln

(
w
v

))
+ lg

(
u
v

)(
w
v

)
m̆v,u,f ≤ lg

(
uv/w
v

)
The reason we use f as a parameter to m̆ rather than w is to support the

case of infinite U and non-zero f :

Corollary 4.3. Let m̆v,∞,f = limu→∞ m̆v,u,f be the minimum space required to

represent any size-v subset of an infinite universe U with non-zero false positive

rate f . The following bounds hold:

m̆v,∞,f ≥ lg f−v

m̆v,∞,f ≤ lg
(
v/f
v

)
Proof First, observe that

lim
u→∞

w

u
= lim

u→∞

(u− v)f + v

u
= f

48 CHAPTER 4. LOWER BOUNDS FOR STATE STORAGE

From Theorem 4.2, this gives us rather directly the upper bound. The lower

bound is not as obvious, but is well-known (written “n log(1/ε)” in [65]):

lim
u→∞

2m̆v,u,f ≥ lim
u→∞

(
u
v

)(
w
v

) = lim
u→∞

(
u
v

)(
uf
v

) = lim
u→∞

v−1∏
i=0

(u− i)
(uf − i)

= lim
u→∞

(
u

uf

)v
= f−v

�

Another special case of Theorem 4.2 is when the false-positive rate is

zero, when the set is exact:

Corollary 4.4. A lower-bound estimate of the space required to represent ex-

actly any size-v subset of a finite universe U (|U | = u) is m̆v,u,0 bits, defined

as

m̆v,u,0 = lg
(
u
v

)
Proof When f = 0, w = v. Thus, the

(
w
v

)
terms in Theorem 4.2 are 1,

making the upper and lower bounds equal. �

4.2 Various magnitudes

For these cases above, we only analyzed the space requirements given some

fixed number of elements, but we are more interested in structures that can

represent up to some number of elements. Here I show the distinction is

usually insignificant. The exact lower bound for up to v given lower bounds

for fixed sizes is

m̆0..v,u,f
(def)
= lg

v∑
i=0

2m̆i,u,f (4.1)

That formula comes directly from counting the possibilities for up to v.

We can generate upper and lower bounds for that based on the maximum

value of the summation:

4.2. VARIOUS MAGNITUDES 49

Theorem 4.5.

v

MAX
i=0

m̆i,u,f ≤,≈ m̆0..v,u,f ≤,≈
(

v

MAX
i=0

m̆i,u,f

)
+ lg v

Proof The lower bound is a simple consequence of the non-negativity of the

m̆i,u,f . The upper bound is also simple:

lg
v∑
i=0

2m̆i,u,f ≤ lg

(
v

v

MAX
i=0

2m̆i,u,f

)
=

(
v

MAX
i=0

m̆i,u,f

)
+ lg v

Finally, because the bounds only differ by lg v, both bounds are good approx-

imations. �

And in most cases, the largest term is going to be the last one, which

simplifies the bounds:

Corollary 4.6.

When m̆v,u,f =
v

MAX
i=0

m̆i,u,f , m̆v,u,f ≤,≈ m̆0..v,u,f ≤,≈ m̆v,u,f + lg v

For example, when u = ∞, we could use a structure to which we have

added v elements with false positive rate f to represent any i < v elements

with the same false positive rate. Thus, m̆v,∞,f is the maximum.

Also, when v = w (equivalently f = 0) and v ≤ u
2
, properties of binomial

coefficients tell us that the last term is once again the largest. Otherwise, it

is likely to also hold when w ≤ u
2
, but this is a difficult case to analyze. We

clearly run into trouble if v > u
2
, and probably so if w > u

2
.

Someone else is welcome to resolve more exactly when these bounds

hold, but it is clear that in many cases, we do not need to draw a distinction

between the space required for representing some exact number of elements

and representing up to that number of elements.

50 CHAPTER 4. LOWER BOUNDS FOR STATE STORAGE

4.3 Simpler bounds

It is easy to see the per-element memory lower bound for the infinite uni-

verse, non-zero false positive rate case,

m̆v,∞,f ≥ v lg f−1 (4.2)

That is, a minimum of lg f−1 bits per added element are needed for the

over-approximation to have a false positive rate of f .

However, it is not easy to understand the per-v contribution to the bounds

involving binomial coefficients, such as m̆v,u,0 = lg
(
u
v

)
. But we can use

bounds on the binomial coefficient to generate bounds that enable us to

think more concretely about what the bounds mean for the implementation

of a data structure. The bounds
(
u
v

)v ≤ (u
v

)
≤
(
eu
v

)v, where e is the base of

the natural logarithm, are well known [17, Section C.1] and give us

v (lg u− lg v) ≤ m̆v,u,0 ≤ v (lg u− lg v + lg e) (4.3)

v (lg u− lgw − lg e) ≤ m̆v,u,f ≤ v (lg u− lgw + lg e) (4.4)

where w = (u− v)f + v

v lg f−1 ≤ m̆v,∞,f ≤ v(lg f−1 + lg e) (4.5)

We can state these using asymptotic notation:

m̆v,u,0 = v (lg u− lg v +O(1)) (4.6)

m̆v,u,f = v (lg u− lgw ±O(1)) (4.7)

where w = (u− v)f + v

4.3. SIMPLER BOUNDS 51

m̆v,∞,f = v(lg f−1 +O(1)) (4.8)

When w � u (and thus v � u), it is difficult for an implementation

to fall within these asymptotic characterizations of memory lower bounds.

The only practical structure I have found to meet these bounds is the Cleary

table, and that’s only in the case of letting the structure fill up completely. 1

The formulas do not tell us much when w is close to u, but that is fine

for this dissertation. I consider the Bloom filter to handle well the cases

in which a large portion of the universe of elements is represented, and I

propose no replacement for the Bloom filter in those cases. To the contrary,

my new adaptive solution in Chapter 11 uses Bloom filters when w must get

close to u because of memory constraints.

In the context of these asymptotic characterizations of “near minimal”

memory, we can simplify things further by the following observation:

Corollary 4.7.

m̆v,u,f = min(m̆v,u,0, m̆v,∞,f)−O(v)

Proof If u =∞, then it is clearly true, so we assume from here that u <∞.

Observe that, with respect to f , m̆v,u,0 is constant and both m̆v,∞,f and

m̆v,u,f are non-increasing, with m̆v,u,f ≤ m̆v,∞,f . Trivially, when f = 0,

m̆v,u,f = m̆v,u,0, and when f = 1, m̆v,u,f = m̆v,∞,f = 0. Also, m̆v,∞,f and m̆v,u,f

are concave-up with respect to f , based on graphing our best lower bounds

(Theorem 4.2) or positivity of the second derivatives of simpler bounds in

Equations 4.4 and 4.5.

See Figure 4.1 for an example depicting these constraints.

Under that set of constraints, the maximum difference between m̆v,u,f

and min(m̆v,u,0, m̆v,∞,f) must occur when m̆v,u,0 = m̆v,∞,f . When that is the

case,

v (lg u− lg v +O(1)) = v(lg f−1 +O(1))

1The standard Cleary table has no random access when it is full. See Chapter 9.

52 CHAPTER 4. LOWER BOUNDS FOR STATE STORAGE

0 1

m̆v,u,0

m̆v,∞,f

m̆v,u,f

f

Figure 4.1: Graphical depiction of various memory lower bounds vs. false
positive rate. This depicts the properties needed for the proof of Corollary 4.7.

⇒ (v > 0, definition of f)

lg u− lg v = lg
u− v
w − v

±O(1))

⇔

lg(w − v) = lg
v(u− v)

u
±O(1))

⇔

w − v =
v(u− v)

u
2±O(1)

⇔

w = v

(
u− v
u

2±O(1) + 1

)
⇒ (0 < v ≤ u)

w = Θ(v)

⇔

lgw = lg v ±O(1)

Plugging this into Equation 4.7 and combining with Equation 4.6 com-

pletes the proof, because the O(v) bound on the difference holds in the max-

4.4. “ASYMPTOTICALLY COMPACT” LITMUS TEST 53

imum case. �

I suspect this has been proven before in perhaps a slightly different form,

but it points to why literature on representations of sets tends to ignore

the detailed analysis of over-approximating a subset of a finite universe: it

is usually okay because your imprecision is only O(v) bits. This is no less

precise than my asymptotic form of the lower bound, Equation 4.7.

4.4 “Asymptotically compact” litmus test

Using variants of Equations 4.6 and 4.8, we can come up with a “litmus

test” for structures that are within a constant factor of optimal, which I call

“asymptotically compact.”

Consider this variant of Equation 4.6:

m̆v,u,0

v
= lg

u

v
+O(1) (4.9)

The suggests a litmus test for exact storage from a finite universe: the

memory required per added element should stay essentially the same if we

scale v and u by some constant c.

A similar test arises out of Equation 4.8:

m̆v,∞,f

v
= lg f−1 +O(1) (4.10)

For inexact storage from an infinite universe, the litmus test is this: the

false positive rate should stay essentially the same if we scale v and m by

some constant c.

Finally, we can do the same for finite universes generally, based on Equa-

tion 4.7:
m̆v,u,f

v
= lg

u

w
+O(1) = lg

u

(u− v)f + v
+O(1) (4.11)

For inexact storage from a finite universe, the litmus test is this: the false

54 CHAPTER 4. LOWER BOUNDS FOR STATE STORAGE

positive rate should stay essentially the same if we scale u, v, and m by some

constant c.

These litmus tests are not sufficient for establishing that solutions are

close to optimal, but they do establish that the asymptotic behavior of the

problem allows us to generalize good performance on moderately large

problems to good performance on arbitrarily large problems.

4.5 Exact representation, infinite universe

What is left is the case of exactly representing a subset of an infinite uni-

verse. This is fundamentally different from the cases above, in which we

could assume we extract some fixed, finite amount of information from each

element for adding it to the structure. More specifically, the amount of in-

formation needed about each element is bounded if either our universe size

is bounded or our accuracy is bounded/imperfect, but now we consider the

case in which neither is bounded. In other words, we have to store elements

of variable size.

In the bounded case, we were agnostic to the input distribution by con-

sidering the worst case: assuming the input contained as much information

as possible, which for finite ranges of integers means they have uniform

distribution.

The unbounded case requires some finesse because we can no longer as-

sume the elements are uniformly distributed: there is no such thing as a uni-

form distribution over a countably infinite domain. It is clear that because

the elements are of variable size, the amount of memory required will de-

pend not just on the number of elements, but also on how much information

they contain. But we cannot assign a unique, finite piece of information to

each element of an infinite, countable set and still be distribution-agnostic.

Some elements will be assigned more information than others.

Despite there not being a distribution-agnostic lower bound, we can still

4.5. EXACT REPRESENTATION, INFINITE UNIVERSE 55

come up with minimal encodings of these sets that can be used as standards

of optimality. In this case, a minimal encoding is a bijective function from

F(N) to N, where F(N) is the set of all finite subsets of N. In theory, all

minimal encodings are equally valid as standards for optimality, because

they are just permutations of each other, but in practice, some are more

reasonable and practical than others.

These observations serve to contrast this variant of the problem with the

ones already discussed. In this dissertation, I will focus on the cases in which

the amount of information needed from each element is bounded, and I will

leave to others the problem of examining the optimality of structures for

exactly representing elements from an infinite universe.

CHAPTER 5

Classical Solutions

Here I present important classical data structures solving Problem 3.1. These

are exact solutions, meaning false positive queries are not allowed/possible,

but I will describe in Chapter 8 how exact solutions can be used as the

basis for inexact solutions. Note that most “textbook” or “standard library”

implementations of dictionaries, maps, or sets are far less space-efficient

than the structures in this chapter, which are only near-optimal in relatively

restricted cases.

Contributions This chapter is mostly to put other chapters in context, but I

describe a simple and reasonably effective design for a compacted chaining

hash table, “2/3rds chaining.”

5.1 Open-addressed table

One of the simplest classical structures that seems very compact is an open-

addressed table of all the elements. If it takes b = dlg |U |e bits to identify

each element, then an open-addressed table accommodating up to v ele-

ments is an array of v entries of b bits each. It is well-known how to use

hashing to compute probe sequences efficiently, such as with double hash-

ing [34].

57

58 CHAPTER 5. CLASSICAL SOLUTIONS

Given v = |V | and u = |U |, the structure requires at least v lg u bits

overall. However, the optimal, m̆v,u,0, is close to v(lg u − lg v) bits. Thus for

small V , the open-addressed table is close to optimal, but for larger V , it

requires Θ(v lg v) more bits than optimal.

Implementation notes:

• There is no need for a bit for each cell indicating whether it is occupied;

we can reserve the entry of all zeros to indicate that a cell is unoccu-

pied and use one extra bit overall (negligible) to indicate whether the

entry of all zeros is in our structure.

• Double hashing is very attractive in that a reasonably small amount of

hash information is needed, there is almost no observable clustering,

and it is easy to make sure your probe sequence is a permutation of

the cell indices [34]. The last is accomplished by either using a prime

number of cells with non-zero increments, or a power-of-2 number of

cells with only odd increments.

• The above analysis presumes we allow the structure to fill up and in

practice, it does not seem that slow. In theory, however, the practice

does not scale. The time to fill the structure completely (as a visited

set) is actually log-linear in the number of cells in the structure, while

the time to fill to some constant occupancy less than 100%, such as

99.5%, is linear. See Section 7.1.5.

• Ordered hashing [2] is not useful when this structure is used as a

visited set, because in that case all negative QUERYs lead to an ADD.

5.2 Bit table

Probably the simplest approach to representing a subset of a finite universe

is to allocate a bit to each element of the universe to indicate whether that

element is in the subset. We shall call this approach a “bit table”. Assuming

5.3. COMPACTED CHAINING 59

we have an easily-computable bijection between U and 0, . . . , u− 1, we can

represent any subset V of U as a bit vector of length u, in which each bit

indicates whether the corresponding element of U is in V .

This structure always uses u bits, so it is only competitively compact

when v is a sizeable fraction of u. For example, if v = u
2

then m̆v,u,0 =

lg
(
u
v

)
<≈ u (because limu→∞ u

−1 lg
(
u
u/2

)
= 1). Thus, this representation is

practically optimal when v = u
2

and, thus, practically optimal for represent-

ing sets up to sizes u
2
≤ v ≤ u (see Section 4.2). But the bit table is far from

optimal when v is much less than u
2
.

Observe that the open-addressed table and the bit table are near optimal

at opposite ends of the spectrum of visited set sizes: the former for small,

sparse sets and the latter for dense sets. A sparse set is one that contains

a negligible portion of the universe, and usually even a small portion when

viewed on a log scale, such as less than the fourth root of the universe size.

A dense set is one that contains a non-negligible portion of the universe,

probably more than one hundredth of the universe. Sets that are larger than

the square root of the universe size but still negligible in absolute terms I

consider to be moderately dense. Note that sparse does not necessarily

imply small, nor does large necessarily imply dense.

5.3 Compacted chaining

Using “compacted” representations of external chaining, which I consider a

reasonably intuitive twist on a classical approach (Knuth agrees [58, Sect.

6.4, exer. 13]), one can construct tables that represent large, moderately

dense sets reasonably compactly. Geldenhuys and Valmari demonstrate such

a structure in SPIN [31] and Valmari also uses the approach in representing

the state space of a 2x2x2 Rubik’s cube [82]. However, the asymptotic mem-

ory usage of the structure inherently dominates the lower bound, which

points to what is special about structures that are within a constant factor of

60 CHAPTER 5. CLASSICAL SOLUTIONS

the lower bound.

5.3.1 Description

The key to this structure is that collisions are resolved in chains (linked lists)

of entries that hash to the same “home address”. If we run each descriptor

through a randomization function (one-to-one hash) and use part of that re-

sult as the “home address”, that part does not need to be stored, because that

information is implied by what chain the entry is in. Thus, the location and

the remainder of the randomized descriptor uniquely identify an element

from our universe. Contrast this to the open-addressed table, in which the

location of an entry within the structure gives us no definitive information1

about the element stored there; any element could end up in any cell.

A second key is not to use machine pointers or a general memory man-

ager for cells; instead, cells should be in an array and “allocated” in order

to the linked lists, which should use bit-packed array indices as pointers. In

fact, it is best to use one array whose indices are home addresses and an-

other for the dynamically allocated cells, whose indices are pointers in the

linked lists. See [82] for more detail.

Even assuming we know how many elements to accommodate (v), there

are numerous design trade-offs:

• Number of “home” addresses, which is how many distinct chains the

structure will have. More homes enable more information to be en-

coded in the location of each entry rather than stored with it, but more

homes also means more chains are expected to be empty.

• Chain preallocation, which is how many entries are pre-allocated for

each chain. In a classical chaining hash table, there would be just a

pointer for each chain, zero preallocation. Some preallocation means

fewer pointers are required to represent short chains, but too much

1It does give us probabilistic information. See Chapter 7.

5.3. COMPACTED CHAINING 61

means lots of wasted space for chains shorter than the preallocation

length.

• Entries per overflow cell. In a typical linked list, there would be only

one entry and one pointer in a cell, but putting more than one entry

in each cell–with just one pointer–can reduce the memory required, or

waste space with unused entries. Heterogeneous cell sizes could also

provide benefit if there is not too much overhead in managing them.

5.3.2 Analysis

The full size of each element, as in an open-addressed table, is lg u rounded

up. In a compacted chaining table, however, there will be a number of home

addresses equal to some reasonable proportion of v, say v/c home addresses.

Consequently, lg(v/c) = lg v − lg c = lg v − O(1) bits of each entry need not

be stored. The memory dedicated to storing the entries themselves then is

v(lg u − lg v + O(1)), which is roughly equal to the memory lower bound

given in Equation 4.3—even asymptotically.

The overhead comes with the pointers and unoccupied cells. The number

of dynamically allocated cells will be some reasonable proportion of v, say

v/c′ pointer addresses. The size of each pointer is then lg(v/c′) = lg v−lg c′ =

lg v−O(1) bits. If we have one pointer per entry, then the total memory usage

is similar to an open-addressed table: v(lg u±O(1)). For the structure to beat

the open-addressed table, therefore, there must be multiple entries for each

pointer, say m entries per pointer on average. Now it is clear that there is

enormous potential for savings over the open-addressed table: v(lg u− lg v+

1
m

lg v±O(1)), but as long as there are Θ(v) pointers of size lg Θ(v) each, the

memory usage of a compacted chaining table asymptotically dominates the

lower bound, v(lg u− lg v +O(1))

Coupling multiple entries per pointer almost necessarily implies some

entries will be left unoccupied, even if the structure overflows. When there

62 CHAPTER 5. CLASSICAL SOLUTIONS

are entries left unoccupied, the memory usage increases by lg u− lg v+O(1)

for each one beyond the v that are occupied. This means the overall memory

required is really Θ(v(lg u− m−1
m

lg v)).

Implementation notes:

• Unless you know your data will be uniformly distributed, it is very

important to use a randomization function on the input elements so

that they are effectively uniformly distributed. Valmari discusses such

a function that works well [82].

• The number of home addresses should be a power of two, so that a

whole number of bits can be used and removed from the randomized

descriptor. The number of dynamically allocated cells can easily be

a non-power of two, with pointer sizes being rounded up to the next

whole number of bits.

• I did not mention OCCUPIED bits in the high-level discussion. It would

clearly take more memory to add another bit to each entry to indicate

whether it is occupied. Some or all of these can be eliminated with

some tricks or special circumstances. The first entry in dynamically-

allocated cells, for example, can be assumed to contain valid entries;

otherwise they would not have been allocated. The trick of reserving

the entry of all zeros to indicate “unoccupied” is not as simple as in

the case of the open-addressed table: rather than there being only one

possible entry that is stored as all zeros, there is a unique such possible

entry per home address/chain. A natural solution, therefore, is to have

a special bit for each home address indicating whether the “all zeros”

entry for that home address is in the set. With that taken care of,

the all zeros trick can be used, and the cost is just one bit per home

address/chain rather than probably several per chain. In the analysis

above, this overhead is subsumed by unknown constant addends.

5.4. SUMMARY 63

• In case it was not obvious, optimizing the design of a compacted chain-

ing table depends heavily on the relative size of entries to pointers.

Smaller, more sparse sets will have relatively large entries, while larger,

more dense sets will have relatively large pointers. The former case fa-

vors filling allocated entries, while the latter favors coupling multiple

entries per pointer.

5.3.3 A clever design: 2/3rds chaining

One approach to saving space in a compacted chaining table is to allow the

last part of a cell to store either a pointer or an entry. Consider employ-

ing this approach with preallocated and dynamically-allocated cells that can

store either [three entries] or [two entries and a pointer], as depicted in Fig-

ure 5.1. A flag bit in the cell indicates whether the final data is an entry or

a pointer. The space should be made large enough to accommodate either,

but the bit of metadata is required to distinguish the two cases.

The nice property is that in any chain with at least two elements, all

cells in that chain have at least two-thirds of their entries storing elements,

as depicted in Figure 5.2. This property is preserved even when a new cell

must be added to the end of the chain, because that case presupposes three

elements occupying the last cell and combining that with the element to be

added gives four elements to be split between the last two cells, leaving each

of them 2/3rds full. This, of course, is the source of the name I have given

the approach.

5.4 Summary

For a comparison of the compactness of these structures over a range of

densities, see Figure 5.3.

64 CHAPTER 5. CLASSICAL SOLUTIONS

entry entry
entry or
pointer

flag bit

Figure 5.1: Allocation unit in a 2/3rds chaining table. Each contains either
two entries and a pointer or up to three entries, as indicated by the flag bit.

e1 e2 e3 e4

e1 e2

e1 e2 e3 e4 e5

e5 e6

e3 e4

e1 e2

e1 e2 e3
add e4

add e5

add e6

add e3

. . .

.

Figure 5.2: Elements being added to one chain of a 2/3rds chaining table.
Observe that in every case, at least roughly 2/3rds of the space is used to store
entry data.

5.4. SUMMARY 65

1

lg u

0
√
u u

M
em

or
y

bi
ts

pe
r

ad
de

d
el

em
en

t
(m

/v
)

Added elements (v, log scale)

Open-addressed table
Bit table
Compacted chaining (from [31])
Cleary table, 90% occupancy

Figure 5.3: Comparison of the compactness of classical structures for various
densities. These numbers come from analyses of these structures, using u = 232,
but only the general shape regardless of u is intended to be conveyed. For
compacted chaining, I use the expected compactness for a design by Geldenhuys
and Valmari [31]. I do not consider the Cleary table a “classical structure” but
it is included here for comparison purposes (see Chapter 9).

CHAPTER 6

Bloom filters (Bitstate hashing)

6.1 Introduction

A Bloom filter [5] represents an over-approximation W of a set V by setting

bits in a bit vector for each element of V . The structure is implemented as

a bit vector of m bits, all initially “0”. To add an element, we set all the bits

associated with that element to “1”. An element is in W iff the all the bits

associated with it are set to “1”.

A standard Bloom filter uses some number, call it k, of independent

hash functions, h1, . . . , hk : U → {0, . . . ,m − 1}, to determine the indices of

bits to be set for each element added. Adding an element x entails setting

the bits at positions h1(x), h2(x), . . . hk(x) to “1”. An element x is in the set

represented by the structure (regardless of whether x was added) iff the bits

at positions h1(x), h2(x), . . . , and hk(x) are all “1”.

Before looking closely at the accuracy of the structure, we can make

several observations. First, there is no traditional collision resolution; there

is no conditional probing; only a fixed number of addresses are probed to see

if an element has not been added. Second, the structure does not overflow in

the traditional sense; a Bloom filter can always “add” more elements because

it can always adapt its representation to ensure its represented set includes

any given elements; any Bloom filter can represent the entire universe of

elements, by having all its bits set to “1”. Finally, it is not possible to reverse-

67

68 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

engineer much information about the elements added to a Bloom filter; we

can’t tell which bits came from the same element, which hash function(s)

set a particular bit, or even exactly how many elements have been added.

Bibliographic and Historical Notes “Bitstate hashing” was a name coined

by Gerard Holzmann to refer to a method of storing visited states of a graph

by setting bits in a table [39, 40]. It was later discovered that this approach

was congruent to using a Bloom filter, in time for publication of Holzmann’s

2003 book on SPIN [42].

Holzmann also used the term “supertrace” for the same approach [36,

37, 38], but typically only for the specific case of setting very few bits per

state in anticipation of memory being severely constrained compared to the

state graph size.

Crediting Holzmann’s contribution, I call using a k = 3 Bloom filter in a

lossy state-space search the “standard bitstate approach.” The justification

for this configuration is best described in Holzmann’s 2003 SPIN book [42],

but I echo that justification in Section 6.3.3.

Contributions My key contributions to Bloom filter theory and practice are

the design and analysis of Bloom filters whose indices are computed from

less hash information than would normally be required. This improvement

can drastically reduce the dependence of access times on the number of

indices computed per state. I also show how to opimize Bloom filters for

use as a visited set, because the existing analysis of optimizing Bloom filters

is based on a different usage paradigm. I use citations throughout indicate

and acknowledge the work of others.

6.2 Accuracy analysis

A Bloom filter is inherently inexact unless used as a bit table (k = 1 and no

hashing; see Section 5.2). Consequently, its expected false positive rate does

6.2. ACCURACY ANALYSIS 69

not depend on the size of the input universe.

The false positive rate of a standard Bloom filter is easily determined at

runtime by the proportion of bits that are still “0”, z, and the number of

indices associated with each element, k. This formula is exact assuming the

hash functions are independent, uniform, and random and that the input

universe is infinite, because under those assumptions it corresponds to the

probability that all k indices for an element refer to bits that are “1”:

fBFz(z, k)
(def)
= (1− z)k (6.1)

If the universe of elements is finite, the actual false positive rate varies,

because random chance determines how much the indices associated with

the unadded elements of the universe overlap with those of the added ele-

ments. In practice, this is rarely significant or important.

But even with an infinite universe, the false positive rate is not statically

determined. Given some number of additions (call it v), indices per element

(k), and bit vector length (m), the proportion of “0” bits can vary based

on the extent to which the additions’ bits overlap, due to random chance.

Assuming the additions are chosen without regard for the hash functions, z

follows a probability distribution. The distribution itself is not simple, but it’s

expected value is easy to find: if we know the probability of each bit being

“0” then linearity of expectations tells us that that is equal to the expected

proportion of “0”s. That probability is just the probability that each of the

vk times a bit has been chosen to set, the bit chosen was not the one in

question:

ẑBF(m, v, k)
(def)
=

(
1− 1

m

)vk
(6.2)

Now if we plug ẑ into Equation 6.1, we get what is actually an approxi-

mation:

f̃BF(m, v, k)
(def)
=

(
1−

(
1− 1

m

)vk)k

≈ f̂BF (6.3)

70 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

Numerous papers have implicitly characterized this formula as the exact

false positive rate of a Bloom filter [5, 73, 9, 62, 16]. Researchers at Carleton

University, however, pointed out that this formula is “incorrect” [7]; it does

not in fact correspond exactly to the expected false positive rate of a Bloom

filter, because the false positive rate for the expected proportion of bits set is

not exactly equal to the expected false positive rate. Equation 6.3 essentially

assumes that a new Bloom filter is constructed independently for each of

the k probes. Details are in the paper [7], but some of their claims are

technically false for failing to recognize that there is variance in the false

positive rates of randomly-seeded Bloom filters. Many places where they

say “false positive rate,” they mean “expected false positive rate.”

However, Mitzenmacher is likely the most thorough, for showing that the

probability of the actual false positive rate deviating significantly from that

induced by these false assumptions is small and proportional to
√
m/em [63,

Section 5.5.3]. Equation 6.3 is more than accurate enough for this disserta-

tion, and after this point, I will often say just “false positive rate” or “accu-

racy” when I really mean the approximate expected value of such.

In fact, since I am mostly concerned with large Bloom filters, an asymp-

totic approximation (below) of Equation 6.3 that depends only on m/v and

k is accurate enough for our purposes. Also, Equation 6.3 is inconvenient to

compute since floating-point arithmetic is poor at representing values close

to 1.

The following approximation of ẑ approaches the actual expectation in

Equation 6.2 as m→∞:

z̃BF(m, v, k)
(def)
= e−kv/m ≈ ẑBF(m, v, k) (6.4)

We can plug that into Equation 6.1 to get the most convenient approximation

6.3. OPTIMIZATION 71

of the false positive rate of a standard Bloom filter:

f̃BF′(m/v, k)
(def)
=
(
1− e−kv/m

)k ≈ f̃BF(m, v, k) (6.5)

With this approximation, the Bloom filter passes our litmus test for an

inherently inexact structure being asymptotically compact (see Section 4.4).

In fact, it has been shown that a Bloom filter at its best is a memory factor

of lg e ≈ 1.44 from optimal [65], as shown in Figure 6.1. Thus, its peak

competitive accuracy is roughly 1/ lg e ≈ 0.693 (see Definition 3.4).

As shown in Section 3.6.2, accuracy metrics relevant to the visited list

usage paradigm can be determined given false positive rate data.

6.3 Optimization

Optimizing the expected accuracy of a Bloom filter depends on which ac-

curacy metric is most appropriate, but some changes always improve ex-

pected accuracy, by any conceivable measure. Such changes are often under-

appreciated, and include these: (1) A Bloom filter using more memory (all

other parameters being equal) is always more accurate (in expectation). (2)

A Bloom filter to which fewer elements have been added (all other parame-

ters being equal) is always more accurate (in expectation).

6.3.1 False positive rate, known v and m

Picking k to minimize the false positive rate is a well-studied problem [62],

but simple solutions are not as effective as they might appear. The main

observation is that the false positive rate approximation of Equation 6.5 is

minimized when k = m
v

ln 2, which also happens to be when z = 0.5, when

the representation is most entropic.

This suggests that if we know ahead of time m and v, choosing k to

maximize accuracy is a matter of plugging it into the formula and round-

72 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

1e-10

1e-08

1e-06

0.0001

0.01

1

510152025303540

Fa
ls

e
po

si
ti

ve
ra

te

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 69.3% Mem

k=1 Bloom filter
k=3 Bloom filter
k=8 Bloom filter
k=15 Bloom filter
k=22 Bloom filter

1e-10

1e-08

1e-06

0.0001

0.01

1

510152025303540Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 69.3% Mem

k=1 Bloom filter
k=3 Bloom filter
k=8 Bloom filter
k=15 Bloom filter
k=22 Bloom filter

Figure 6.1: Comparison of inaccuracy of Bloom filter configurations with in-
formation-theoretic lower bounds. It is known that a Bloom filter at its best is
a memory factor lg e ≈ 1.44 from optimal [65], or, equivalently, as accurate
as the optimal for 1/ lg e = ln 2 ≈ 0.693 as much memory. That result applies
to the false positive rate, as shown in the top graph, for several Bloom filter
configurations. The bottom graph shows essentially the same bound holds for
the expected hash omissions (or expected proportion of states hash omitted)
also.

6.3. OPTIMIZATION 73

ing to the nearest positive integer. Even if the formula were not based on

an approximation, this method is flawed. The method finds the best non-

discrete value of k and suggests the nearest discrete value of k should be the

best, but the best discrete k is not always the one nearest the non-discrete

k that minimizes the false positive rate formula. For example, according

to Equation 6.5, k = 1 and k = 2 yield the same false positive rate when

m/v = 2.078, but m
v

ln 2 = 1.5 when m/v = 2.164. If m/v is between those

two values, the answer given by rounding the non-discrete k is likely to be

suboptimal.

What about a generalization of the standard Bloom filter that imple-

ments non-discrete k? We do not know of such a structure that actually

offers improvement over the standard Bloom filter. Suppose we implement

a structure that supports non-discrete k by setting bkc indices for bk+ 1c− k

proportion of the additions and bk+1c for the remaining k−bkc proportion.

This makes the expected proportion of bits being “0” after v additions satisfy

Equation 6.2 for real-valued k ≥ 1. The false positive rate is very close to

f̃ = (bk + 1c − k)(1 − ẑ)bkc + (k − bkc)(1 − ẑ)bk+1c. Consider once again

the example of m/v = 2.078, when k = 1 and k = 2 yield approximately

the same false positive rate. Using the above scheme for non-discrete k, it

is easy to see graphically that the false positive rate is worse for every k be-

tween 1 and 2 than it is for either 1 or 2, as in Figure 6.2. Although I have

not confirmed it formally, it is easy to be convinced that in any case, the

minimum false positive rate for this structure will occur for a discrete value

of k, unlike Equation 6.5.

An efficient way of implementing non-discrete k for Bloom filters would

be an interesting and impressive piece of work.

Stuck in the discrete world, a better way to pick the best k would be to

precompute them/v values which are the boundaries between the regions of

a particular k minimizing the false positive rate given by Equation 6.5. This

approach is strikingly simple and has been done in the left side of Figure 6.3

74 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3 3.5 4 4.5 5

Fa
ls

e
po

si
ti

ve
ra

te
fa

ct
or

(s
ee

ca
pt

io
n)

k (non-discrete)

Known (flawed), best k = 1.5
Hypothetical, best k = 1.5

Known (flawed), best k = 3.5
Hypothetical, best k = 3.5

Figure 6.2: Accuracy of a flawed method for using non-discrete k in a Bloom
filter compared to optimistic expectations. The expected false positive rates are
computed from formulas and then each curve is normalized against the false
positive rate of the best known implementation, which is to use the best discrete
k. The “Known (flawed)” curves are based on the expected false positive rates
for a flawed approach to setting a non-discrete number of indices per element
in a Bloom filter. The “Hypothetical” curves are based on using Equation 6.5
with non-discrete k. Using k = m

v
ln 2, m

v
= 2.164 makes the best non-discrete

k = 1.5, and m
v

= 5.049 makes the best non-discrete k = 3.5.

6.3. OPTIMIZATION 75

Minimize false positive rate
k = m/v m

v ln 2 err†

1 and 2 2.07809 1.718%
2 and 3 3.55619 0.600%
3 and 4 5.01353 0.303%
4 and 5 6.46426 0.183%
5 and 6 7.91206 0.122%
6 and 7 9.35826 0.087%
7 and 8 10.8035 0.066%
8 and 9 12.2482 0.051%
9 and 10 13.6924 0.041%

10 and 11 15.1364 0.033%
11 and 12 16.5801 0.028%
12 and 13 18.0237 0.024%
13 and 14 19.4671 0.020%
14 and 15 20.9105 0.018%
15 and 16 22.3537 0.015%
16 and 17 23.7969 0.014%
17 and 18 25.2400 0.012%
18 and 19 26.6831 0.011%
19 and 20 28.1261 0.010%
20 and 21 29.5692 0.009%
21 and 22 31.0121 0.008%
22 and 23 32.4551 0.007%
23 and 24 33.8981 0.007%
24 and 25 35.3409 0.006%
25 and 26 36.7839 0.006%
26 and 27 38.2267 0.005%
27 and 28 39.6696 0.005%
28 and 29 41.1124 0.005%
29 and 30 42.5553 0.004%
30 and 31 43.9981 0.004%
31 and 32 45.4410 0.004%
32 and 33 46.8838 0.003%

Minimize expected hash omissions
k = m/v m

v ln 2 err‡ Eqn 6.6 err‡

1 and 2 1.13459 32.31% 0.315%
2 and 3 2.34809 20.72% 0.082%
3 and 4 3.64409 15.37% 0.073%
4 and 5 4.98501 12.24% 0.042%
5 and 6 6.35288 10.18% 0.022%
6 and 7 7.73819 8.717% 0.012%
7 and 8 9.13545 7.625% 0.006%
8 and 9 10.5413 6.777% 0.004%
9 and 10 11.9534 6.099% 0.003%
10 and 11 13.3703 5.545% 0.003%
11 and 12 14.7910 5.084% 0.004%
12 and 13 16.2147 4.693% 0.004%
13 and 14 17.6409 4.359% 0.005%
14 and 15 19.0689 4.069% 0.006%
15 and 16 20.4987 3.815% 0.006%
16 and 17 21.9298 3.592% 0.007%
17 and 18 23.3621 3.393% 0.007%
18 and 19 24.7954 3.215% 0.008%
19 and 20 26.2295 3.054% 0.008%
20 and 21 27.6645 2.909% 0.009%
21 and 22 29.1999 2.777% 0.009%
22 and 23 30.5361 2.657% 0.009%
23 and 24 31.9728 2.547% 0.009%
24 and 25 33.4099 2.445% 0.009%
25 and 26 34.8474 2.351% 0.009%
26 and 27 36.2852 2.264% 0.010%
27 and 28 37.7234 2.184% 0.010%
28 and 29 39.1619 2.109% 0.010%
29 and 30 40.6006 2.039% 0.010%
30 and 31 42.0396 1.973% 0.010%
31 and 32 43.4787 1.911% 0.010%
32 and 33 44.9181 1.854% 0.010%

Error percentages are maximum relative error in †false positive rate or ‡expected hash omis-
sions due to choosing the best k with the given approximation scheme.

Figure 6.3: Comparison of methods for choosing best Bloom filter k. On the
left are the m/v values which are the boundaries between regions for which a
particular k minimizes the false positive rate of a Bloom filter. For example,
k = 3 is optimal if 3.55619 ≤ m/v ≤ 5.01353. The “m

v
ln 2 err” tells how

much the false positive rate could deviate if choosing k by rounding m
v

ln 2 to
the nearest positive integer. The right is similar, except that expected hash
omissions are minimized and the relative error in expected hash omissions for
two approximation schemes is shown. m/v values are given with six significant
digits.

76 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

for k up to 32. Aside from limited significant digits, this approach gives

the best answer possible using only Equation 6.5, which is quite accurate

for Bloom filters larger than, say, a kilobyte. The m
v

ln 2 result is based on

Equation 6.5 as well but can choose a k with a false positive rate up to

1.718% higher than the optimal, as demonstrated in Figure 6.3.

The most accurate way of picking k to minimize the false positive rate,

however, still involves picking the one for which Equation 6.3 is minimized.

Since the formula is considered undefined for non-discrete k, it cannot be

minimized with traditional symbolic methods. We do know, however, that

any local minimum in the false positive rate versus k is a global minimum,

and we also know that the best k will be either bm
v

ln 2c or dm
v

ln 2e (except

perhaps for extremely small m). Thus, instead of rounding m
v

ln 2, one could

use it to determine which two discrete k to pick between.

6.3.2 Expected hash omissions, known v and m

For a visited set, one should pick k to minimize the a priori expected hash

omissions, since this is the best way we know to minimize total omissions

and, thus, maximize coverage as well. We do not have a closed form formula

for expected hash omissions from a Bloom filter, so minimization might seem

to require a lot of computation. In reality, we can do one set of computations

and reuse those.

As with the false positive rate, the k that minimizes expected hash omis-

sions depends only on the ratio between m and v (for large m). Equation 6.5

helps us out here, but we should confirm this result analytically. First, the

k that minimizes ô also minimizes ô/v, the expected proportion of additions

hash omitted. Based on that reduction, it is sufficient to confirm that mini-

mizing ô/v for a given m and v is very close to minimizing ô/(cv) for cm and

cv, which has been scaled by some constant c but has the same memory per

6.3. OPTIMIZATION 77

added element:

1

v
ôBF(m, v, k)

≈ 1

v

v−1∑
i=0

(1− e−ki/m)k

≈ 1

v

∫ v

0

(1− e−ki/m)kdi

=
1

cv

∫ cv

0

(1− e−ki/cm)kdi

≈ 1

cv

cv−1∑
i=0

(1− e−ki/cm)k

≈ 1

cv
ôBF(cm, cv, k)

Consequently, we can precompute the m/v values that are boundaries

between regions for which a particular k minimizes expected hash omis-

sions, which we have done in the right side of Figure 6.3. We also see there

that the scheme for approximating the best k to minimize the false posi-

tive rate does not transfer well to minimizing expected omissions, since it

can result in up to 32.31% higher expected hash omissions. We have con-

structed a reasonably simple function that fits these boundary values much

more closely:

Choose k =
⌈
3.8(m/v+4.2)−1m

v
ln 2
⌉

(6.6)

As shown in the right-most column of Figure 6.3, choosing k based on this

formula can increase expected hash omissions by no more than a third of

one percent versus using the actual best k.

6.3.3 Unknown v

If we do not know how many elements will be added to a Bloom filter,

optimizing it is tricky. Any k we pick is going to favor some ratios of m and

78 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

v over others. One way to resolve this is if there is a “threshold” accuracy,

above which is generally “good” and below which is generally “bad”.

For example, we might have an application in which we reconstruct the

Bloom filter with more memory each time the false positive rate gets above

1%. In this case, we want to maximize the cases in which the structure has

below 1% false positive rate. Given m, this is not too hard.

When using the Bloom filter as a visited set, we have a similar conun-

drum. If, for example, we want the best chance of exhaustive exploration

of the state space, we would choose k such that the most cases as possible

expect less than one hash omission. Some computation has shown that k to

be close to lnm.

Holzmann’s approach to the problem of unknown v is optimized for find-

ing bugs quickly. By optimizing for the worst case scenario—when there is

very little memory for each state—Holzmann guarantees that the number of

states visited is going to be near the maximum possible, even when there is

moderate memory per state. The number of states omitted might be orders

of magnitude higher than would be possible with a different configuration,

but that difference is small in comparison to the number of states visited.

This is shown in Chapter 2, including Figure 2.1.

The interesting thing about the Holzmann approach is that the best con-

figuration to use when memory is most constrained is usually not k = 1. It

is sometimes not even k = 2 or k = 3. The actual best configuration in this

case depends on the connectivity of the state space being explored, because

the search usually starves for known new states before the Bloom filter is

saturated enough for k = 1 to be the best. Holzmann used to advocate us-

ing k = 2 by default but later switched to advocating k = 3. I suspect the

change was associated with common use of partial order reductions, which

seem to reduce the connectivity of a graph and, thus, hasten starvation of

the inexact search. See Holzmann’s papers [38, 40] and 2003 book [42] for

more details.

6.4. SPEED AND FINGERPRINTING 79

6.4 Speed and fingerprinting

6.4.1 History

There has been a long-standing assumption that Bloom filters could not be

simultaneously compact, accurate, and fast, because of the large amount

of hash computation required for highly accurate, compact configurations,

which have large k. In a 2001 paper, Mitzenmacher made this observa-

tion [62]:

[I]t is worth noting that there are three fundamental perfor-

mance metrics for Bloom filters that can be traded off: compu-

tation time (corresponding to the number of hash functions k),

size (corresponding to the array size m), and the probability of

error (corresponding to the false positive rate f).

In his 2003 book, Holzmann states the impact on a model checker [42]:

In a well-tuned model checker, the run-time requirements of the

search depend linearly on k: computing hash values is the single

most expensive operation that the model checker must perform.

The larger the value of k, therefore, the longer the search for

errors will take. In the model checker SPIN, for instance, a run

with k = 90 would take approximately 45 times longer than a

run with k = 2. ... The question is then how much quality we

sacrifice if we select a smaller than optimal value of k.

It was widely assumed that the k indexes could only come from inde-

pendent hash functions without a significant impact on accuracy. Beginning

with a 2004 paper in the SPIN Workshop, we showed that once two or three

indices are computed from hash functions, the rest can be computed with

simple arithmetic on those, removing most of the time cost associated with

80 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

larger values of k [24, 23]. Our basis for these approaches, largely for ana-

lytical purposes, is the fingerprinting Bloom filter.

6.4.2 Fingerprinting Bloom filter

Rather than computing each index using an independent hash function on

the input element, a fingerprinting Bloom filter computes an intermediate

hash fingerprint from which all the indices are computed. Having these

two levels of hashing can reduce quite significantly the hash computation

required. If the input element is |x| words long, the hash fingerprint is |φ|

words long, and each index is one word, then a fingerprinting Bloom filter

requires |x| · |φ|+ |φ| ·k units of hash computation where the standard Bloom

filter requires |x| · k units of hash computation. Thus, if |x| = 20 words,

|φ| = 2 words, and k = 12, then the fingerprinting Bloom filter requires just

64 units of time hashing where the standard requires 240.

The remaining question is whether it is reasonable to base many Bloom

filter indices on a fingerprint that only has two indices worth of entropy in

it. To answer this question, we analyze what can lead to false positives in a

fingerprinting Bloom filter. If we assume that the indices are computed using

independent hash functions that operate on the fingerprint, then there are

just two sources of false positive queries: a fingerprint false positive occurs

when all indices probed are set to “1” because an element that happened to

have the same hash fingerprint was added previously; a filter false positive

occurs when all indices probed are set to “1” by elements with different hash

fingerprints. Assuming the indices are computed using independent, random

hash functions on the fingerprint, the filter false positive rate is exactly as

in a regular Bloom filter with the same m, v, and k. The fingerprint false

positive rate depends on s, the number of possible hash fingerprints:

f̂FP(v, s)
(def)
= 1−

(
1− 1

s

)v
(6.7)

6.4. SPEED AND FINGERPRINTING 81

But when v is large, the fingerprint false positive rate essentially only de-

pends on v/s:

f̃FP′(
v
s
)

(def)
= 1− e−v/s ≈ f̂FP(v, s) (6.8)

The overall false positive rate of a fingerprinting Bloom filter is the prob-

ability of either:

f̃FPBF(m, v, k, s)
(def)
= f̂FP(v, s)⊕ f̃BF(m, v, k) (6.9)

where we use⊕ as shorthand for the probability of the union of independent

probabilities:

p⊕ q = p+ q − pq = 1− (1− p)(1− q)

Equation 6.9 is an approximation because f̃BF is an approximation and

because the expected number of unique fingerprints added to the underlying

Bloom filter is less than v due to potential overlapping. The latter effect is

usually negligible and could only make the fingerprinting Bloom filter look

worse analytically.

We can use a simpler approximation to show how the fingerprinting

Bloom filter scales. In Equation 6.5, we used m/v as a parameter instead of

m and v individually, because m/v is scale-independent. The scale-indepen-

dent variant of s is s/m, which is better understood in terms of its logarithm:

lg(s/m) = lg s − lgm is how many more bits are in a fingerprint than in a

Bloom filter index.

f̃FPBF′(
m
v
, k, s

m
)

(def)
= f̃FP′(

v

�m
�m
s

)⊕ f̃BF′(
m
v
, k) (6.10)

≈ f̃FPBF(m, v, k, s)

From this approximation, it is obvious that if we scale m, v, and s each

by a constant c, the resulting structure should have approximately the same

false positive rate. If we assume the size of a fingerprint is the size of an

82 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

index plus some fixed amount, then the false positive rate depends only on

the ratio of m and v. As a corollary, if the fingerprint is the size of two or

more indices, the false positive rate due to fingerprinting approaches zero if

we scale up m and v while maintaining their ratio.

Figure 6.4 shows the interaction between f̃FP and f̃BF in the false positive

rate of a fingerprinting Bloom filter. Basically, when few elements have been

added, false positives due to fingerprinting are most likely. When many

elements have been added, false positives due to the underlying Bloom filter

are most likely. The v/m at which fingerprinting begins to have a negligible

impact depends on s/m, or how much larger than an index a fingerprint is

(lg(s/m) bits).

For those interested in using a Bloom filter at a particular v/m, the fin-

gerprint can be made large enough to have a negligible impact. For ex-

ample, k = 3 is optimized for v/m near 0.2; Figure 6.4 shows that using

just lg(s/m) = 6 extra bits for the fingerprint puts v/m ≈ 0.2 well into the

territory of negligible impact.

For those interested in a Bloom filter remaining below a certain false

positive rate, the fingerprint can (similarly) be made large enough to have

a negligible impact. That same example remains below a 1% false positive

rate for nearly the same set of v/m values.

In practice, with stock hash functions, we make sure the fingerprint is

big enough, but utilize all final hash information computed by the hash

function(s). Basically, more fingerprint is more accurate, and fast index

computation techniques in Section 6.5 can compute indices quickly from

a reasonably large fingerprint.

6.4.3 Hash-extending Bloom filter

An optimization of the fingerprinting Bloom filter is to use the fingerprint

as-is in computing one or more indices. Strangely, this optimization im-

6.4. SPEED AND FINGERPRINTING 83

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

0.001 0.01 0.1

Fa
ls

e
po

si
ti

ve
ra

te
(l

og
sc

al
e)

Elements added, as proportion of memory bits (v/m)

Experimental
f̃FPBF, lg(s/m) = 6, k = 3
f̃FP, lg(s/m) = 6
f̃BF, k = 3

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

0.001 0.01 0.1

Fa
ls

e
po

si
ti

ve
ra

te
(l

og
sc

al
e)

Elements added, as proportion of memory bits (v/m)

f̃FPBF, lg(s/m) = {6, 10, 14}, k = 3
f̃FP, lg(s/m) = {6, 10, 14}
f̃BF, k = 3 6

10

14

Figure 6.4: How fingerprinting affects the false positive rate of a Bloom fil-
ter. The expected false positive rate of a fingerprinting Bloom filter (f̃FPBF) is
roughly the sum of the false positive rate due to fingerprinting (f̃FP) and the
false positive rate due to the underlying Bloom filter (f̃BF). Both axes use a
logarithmic scale. In all these examples, we set k = 3 bits per element and
used m = 216 bits of memory, though the graphs look the same for any large
m. The fingerprint was lg(s/m) = 6, 10, or 14 bits larger than one index.
Each point of “Experimental” came from simulating 4 000 000 queries against a
fingerprinting Bloom filter by querying that many random fingerprints. Indices
were computed from each fingerprint using a Jenkins hash.

84 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

proves not only speed, but also accuracy. I call this construction the “hash-

extending Bloom filter,” illustrated in Figure 6.5. The only difference from

a fingerprinting Bloom filter is that we use the initial hash value (or “fin-

gerprint”) directly to get indices before computing other hash values from

it. If the fingerprint is not much larger than one index and k is small, this

approach has a distinguishably lower false positive rate than the ordinary

fingerprinting Bloom filter, despite using less hashing.

The analysis is affected because the two false positive probabilities (fin-

gerprinting and Bloom filter) are not as independent. When we consider

false positives in the underlying Bloom filter, we are assuming the fingerprint

did not match a previously added fingerprint. A non-randomized relation-

ship between the fingerprint and the first index means that that assumption

makes the first index less likely to collide with other first indices and, thus,

less likely to collide with other indices overall.

To think about this formulaically, let us first consider an alternate param-

eterization of the false positive rate of a Bloom filter:

f̃BFa(m, a, k)
(def)
=

(
1−

(
1− 1

m

)a)k
(6.11)

f̃BFa(m, vk, k) = f̃BF(m, v, k)

vk is the number of bits, potentially overlapping, that have been set to “1”

because of the v additions.

Now consider that we can divide up the false positive rate of a Bloom

filter as the probability the first index colliding (already set to “1”) and the

probability of the rest colliding:

f̃BFa(m, vk, k) = f̃BFa(m, vk, 1)f̃BFa(m, vk, k − 1) (6.12)

In each case, any one (or more) of the vk bits previously set to “1” might

cause the collision.

6.4. SPEED AND FINGERPRINTING 85

h0

Index 1Index 0

h0

Index 1 Index 2 Index 3Index 0

h0

Index 1 Index 2 Index 3Index 0

Hash fingerprint

Hash−reusing
Bloom filter

h1 h2

copied as is

Hash fingerprint

Hash−extending
Bloom filter

Hash fingerprint

Fingerprinting
Bloom filter h h2 h31

Element (maybe big)

Element (maybe big)

Element (maybe big)

|| +1|| ||

+1 = add one in
 modular arith.

|| = copied as is

Figure 6.5: Comparison of index computation in “fingerprinting,” “hash-ex-
tending,” and “hash-reusing” Bloom filters. h0, h1, . . . are independent hash
functions. In this depiction, the hash value returned by each hash function is a
little bigger than one index into the Bloom filter.

86 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

The probability of the first index colliding can be divided between the

probability of it colliding with another first index or with a non-first index:

f̃BFa(m, vk, 1) = f̃BFa(m, v, 1)⊕ f̃BFa(m, v(k − 1), 1) (6.13)

When considering the underlying Bloom filter false positive in a hash-

extending Bloom filter, the assumption of the uniqueness of the fingerprint

makes the first index less likely to have collided with previous first indexes.

In particular, this index only has s/m− 1 fingerprints associated with it that

are different from the current fingerprint, while all the other indices have

s/m. The effect on the likelihood of a first index to first index collision is

similar to adding only s/m−1
s/m

= 1−m/s as many elements.

Thus, to get the false positive rate for a hash-extending Bloom filter, we

replace f̃BFa(m, v, 1) with f̃BFa(m, v[1 − m/s], 1). Then using Equation 6.13

as a lemma, we get

f̃BFa(m, v[1−m/s], 1)⊕ f̃BFa(m, v[k − 1], 1)

= f̃BFa(m, v[k −m/s], 1)

Thus, the false positive rate of the hash-extending Bloom filter is approx-

imated like so:

f̃HEBF(m, v, k, s)
(def)
= f̃FP(v, s) ⊕

f̃BFa(m, v[k −m/s], 1)f̃BFa(m, vk, k − 1)
(6.14)

We only consider the first index here because if the fingerprint is signifi-

cantly larger than one index, such as the size of two indices, then the overall

effect is negligible (m/s is tiny) and the fact that more than one index is

affected does not matter. Note that our Bloom filter hashing schemes based

on double hashing (Section 6.5) are actually more like hash-extending than

plain fingerprinting, but the difference is negligible assuming the fingerprint

is the size of two or more indices. (lg s = 2 lgm⇒ m/s = 1/m. k−1/m ≈ k)

6.4. SPEED AND FINGERPRINTING 87

6.4.4 Hash-reusing Bloom filter

Even cheaper than using the fingerprint literally as some index information is

to reuse parts of it to get all of the index information, as shown in Figure 6.5.

We call this approach “hash-reusing.” We really only consider the k = 2 case

because there are unexplored nuances for larger k, and k = 2 is the only

case needed for my adaptive state storage scheme, in Chapter 11.

Here is how it works. Like the hash-extending Bloom filter, the first index

is exactly some “prefix” of the fingerprint. To get the second index, we

take what remains of the fingerprint and replace that much information at

the “end” of the first index. That is the basic idea, but it requires a tweak

because of a tremendous flaw: the second index will often overlap with the

first! All it takes is for the suffixes to be the same; thus, this can dramatically

raise the false positive rate. This problem can be rectified by guaranteeing

uniqueness between the two indices, by adding 1 to the prefix re-used for

the second index (mod the range of values). Figure 6.5 depicts this better

solution.

Note that none of the Bloom filters previously discussed guarantee that

the k indices associated with an index are unique. For the kinds of large

Bloom filters of primary interest here, uniqueness of the indices is insigni-

ficant—except in the hash-reusing Bloom filter. This design is an exception

because it uses/assumes no additional hashing to compute indices from a

fingerprint. Basically, the easiest pit to fall into with pseudo-random Bloom

filter indices is to have an abnormally high probability of overlap within

the k indices for an element. An easy way to avoid this pitfall is to build

uniqueness into the design, which also proves useful for double hashing

in Bloom filters (see Section 6.5.1). Interestingly, the easiest method of

guaranteeing uniqueness in a standard Bloom filter, confining the ith index

of each element to the ith region of a k-partition of the bit vector, reduces

the false positive rate slightly [9]. Because the hash-reusing Bloom filter is

88 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

already working with reduced entropy, guaranteeing uniqueness in a similar

way seems to confer an advantage in this case.

Analytically, this is a simple extension of the hash-extending Bloom filter.

Basically, both indices computed by this scheme benefit from the assumption

of fingerprint uniqueness, because both the first and the second index are

effectively a literal piece of the fingerprint. Thus, each of the two indices

has the same favorable collision probability that the first index had in the

hash-extending Bloom filter. (The second index is less likely to collide with

a previous second index, just as a first index is less likely to collide with a

previous first index, because of the assumption of fingerprint uniqueness.)

Here is the equation for k = 2 (using Equation 6.12 as a lemma):

f̃HRBF(m, v, 2, s)
(def)
= f̃FP(v, s)⊕ f̃BFa(m, v[2−m/s], 2) (6.15)

If only a small number of bits are replaced to get the second index, the

two indices are guaranteed to be close to each other. This normally has an

adverse affect on the false positive rate of a Bloom filter (see e.g. [72]), but

under the pretense of limited hash information being available, the hash-

reusing approach is actually superior. The speed advantage of this locality is

discussed in Section 11.2.4.

6.4.5 Empirical validation

Accuracy For purposes of comparison with each other and with formula

predictions, we have implemented the above schemes in a way that allows

us to simulate a series of ADD and QUERY operations simply using random

values as fingerprints.

A simple validation of the fingerprinting Bloom filter’s accuracy is already

shown in Figure 6.4.

Next, we examine the case in our adaptive storage scheme (from Chap-

6.4. SPEED AND FINGERPRINTING 89

ter 11) when fingerprinting or hash-reusing will have the largest impact on

accuracy. We know fingerprinting has the largest relative impact on accu-

racy when the number of additions is small relative to memory; thus, we

need to examine the Bloom filter’s accuracy right after creating it from the

8-bit-per-cell Cleary table. Assuming we convert after the table is 80% full,

the number of elements in the Bloom filter will already be about 1/10th the

number of memory bits. In that case we get these false positive rates:

Technique Theoretical Experimental

Standard† 0.03286 0.03284

Fingerprinting 0.04488 0.04450

Hash-extending 0.04303 0.04279

Hash-reusing 0.04129 0.04130

† Not compatible with our adaptive storage scheme.

These results are actually the “1/10” results from Figure 6.6, which has

additional results and a different way of presenting the false positive rates.

The experimental setup is described in the caption. These results are just

representative of many runs and trials not recorded here. I was also careful

to validate the “random” input, which XORs results from two pseudorandom

generators and a large entropy pool.

The empirical results confirm the strange analytical result: when the

hash information available is limited, using no additional hashing to com-

pute the indices (“hash-reusing”) can be better than additional hashing (“fin-

gerprinting”). Using limited additional hashing (“hash-extending”) gives re-

sults between those two. The standard Bloom filter has the best accuracy, but

requires the most hashing (and is not compatible with my adaptive storage

scheme in Chapter 11).

Speed The speed advantages of using fingerprinting instead of an inde-

pendent hash function for each index should be obvious, and are well docu-

90 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

1

1.2

1.4

1.6

1.8

2

1/32 1/16 1/101/8 1/4 1/2

F.
p.

ra
te

,a
s

fa
ct

or
fr

om
St

an
da

rd

Elements added, as proportion of memory bits

Fingerprinting, Theoretical
Hash-extending, Theoretical

Hash-reusing, Theoretical
Standard, Theoretical

Fingerprinting, Experimental
Hash-extending, Experimental

Hash-reusing, Experimental
Standard, Experimental

Figure 6.6: Comparison of false positive rates of three kinds of Bloom filters
based on limited hash information with a standard Bloom filter. Lower is better.
“Theoretical” results come from formulas and “experimental” results represent
20 million random queries on at least 625 different structures. All use k = 2

and m = 216, though m was chosen simply to be large enough that the results
generalize to larger structures, confirmed by re-running the experiments with
m = 218. The “1/10” results represent the smallest v/m the hash-reusing Bloom
filter will encounter as a part of the adaptive storage scheme, meaning the
special k = 2 Bloom filter has at worst a 30% higher false positive rate in that
scheme compared to a standard k = 2 Bloom filter.

6.4. SPEED AND FINGERPRINTING 91

�������������� 	
����������� 	
���������

�

��

��

��

��

��

��

��

�����

�����

�����

�����

�����

�����

���� ����
����

���� ����
����

����

����

������

�� �

!
�
�
�

��
!
�
�
��
�
��
"
�#
�!
�
�
#
!
�
�

Figure 6.7: Comparison of the speed of “fingerprinting,” “hash-extending,” and
“hash-reusing” Bloom filters. Higher is better. The y-axis is the average speed of
each add and query operation among tens of millions of random queries against
a pre-populated structure (z ≈ 0.5) and the same number of random additions
to that structure. All the cases use k = 2, because that is what the hash-reusing
Bloom filter supports. Tests were compiled with gcc 4.4.3 (-O3) and run on
a 64-bit Linux system with Intel Xeon X5677 CPUs (3.47GHz, 32KB L1 data
cache, 12MB L3 cache). See text for more information on the implementation
and analysis of the results.

mented in my publications [24, 23].

The more interesting speed issues have to do with comparing the three

special kinds of Bloom filters described in this section. Figure 6.7 tells us a lot

about the speed characteristics of the various approaches by comparing their

essentially ideal speed over wildly different memory sizes. I say the results

are essentially “ideal” speed because the cost of obtaining a fingerprint from

hypothetical input is near minimal, because they are obtained from glibc’s

random() function, which is quite fast and adequately random for speed

simulations. Also, the Jenkins-derived hash function [52] for computing

92 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

indices from the fingerprint is also quite fast, because it hashes just one 64-

bit word into another, with no multiplication, division, or branching.

In analyzing the results in Figure 6.7, keep in mind these statistics:

k = 2 Bloom filter Hashed indices Trivial indices Index locality?

Fingerprinting 2 0 no

Hash-extending 1 1 no

Hash-reusing 0 2 yes

In other words, the fingerprinting Bloom filter is slowest because it has

to compute both indices using hash functions on the fingerprint, and the two

indices are not guaranteed to be near each other. The hash-extending Bloom

filter does not have locality between indices either, so its faster speed is due

to replacing one hash function call with direct use of the fingerprint. Note

that when main memory must be consulted for the operation (256MB and

8GB), and to a lesser extent L3 cache (8MB), the savings in hashing time are

small compared to memory access time.

By contrast, the hash-reusing Bloom filter shows its biggest advantage

when memory accesses are most expensive, because its indices are in adja-

cent words. (Reusing is more than 20% faster than extending for 8GB but

only about 10% faster for 8KB.) Everything from the DRAM to the TLB to

the on-chip cache is designed to take advantage of such locality.

It is interesting to note the difference in speed between 256MB and 8GB.

This cannot be explained by a 12MB L3 processor cache, which would only

hit about 1 in 20 accesses. Even if half the accesses to the 8GB space were in-

stantaneous, it would not be as fast on average as the accesses in the 256MB

space. This must be due to more TLB misses due to a much larger working

set size, which increases the latency of random accesses. (The TLB is re-

sponsible for mapping virtual memory addresses to physical addresses, using

page tables, which might be more extensive than the TLB is able cache.)

6.5. FAST INDEX COMPUTATION 93

6.5 Fast index computation

Although the k = 2 hash-reusing Bloom filter is quite useful as-is, the hash-

extending and fingerprinting Bloom filters have so far assumed that a so-

phisticated hash function is required to compute each additional index from

the fingerprint. Here I describe several techniques requiring negligible com-

putation time for each additional index but whose accuracy is almost indis-

tinguishable from a hash-extending or fingerprinting Bloom filter.

For describing these techniques, we say that a Bloom filter uses k index

functions, g1, . . . , gk, to determine the indices associated with an element.

In a standard Bloom filter, these are independent hash functions: g1(x) =

h1(x), . . . , gk(x) = hk(x). In these Bloom filter variants, index functions will

not be just hash functions.

Bibliographic Notes Double hashing is a well-known technique for com-

puting probe sequences in open-addressed hash tables [17, Section 11.4].

For more detail, refer to Knuth [58] or Gonnet [34].

Our 2004 SPIN Workshop paper [24] appears to be the first to apply dou-

ble hashing to Bloom filters, and introduced a variant called “triple hash-

ing” to make better use of available hash information. Our FMCAD follow-

up [23] introduced “enhanced double hashing” to address some of the short-

comings of using double hashing with Bloom filters, without requiring more

hash information.

Kirsch and Mitzenmacher followed up on our work with a more formal

analysis of index computation schemes like double hashing in Bloom fil-

ters [55, 56]. Others have also cited our Bloom filter work.

This section includes more unpublished ideas, details, and analyses of

index computation in Bloom filters.

94 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

6.5.1 Double hashing

We can apply the “double hashing” method of computing probe sequences

in hash tables to computing Bloom filter indices. It does not work especially

well in this new application, but its weaknesses do motivate the “enhanced

double hashing” and “triple hashing” techniques that follow.

To minimize the expected number of probes to locate an entry in an

open-addressed hash table, one ideally uses a sequence of independent hash

functions to choose the sequence of table locations to probe. Double hash-

ing is an alternative that is nearly as effective but requires only two hash

functions to compute a sequence of probe locations. The first hash function

computes starting location (call it a = h1(x)). The second hash function

computes the difference between subsequent locations (call it b = h2(x)).

Specifically, any next location in the sequence is the current location plus b,

modulo the number of locations.

We can also express the ith index in the sequence in closed mathematical

form:

gi = a+ ib (mod m) (6.16)

It is simple to apply this idea to computing Bloom filter indices. See

Figure 6.8 (excluding parts in boxes) for the algorithm. We will call this

the “naive” double hashing algorithm because it does not address Issue 1

below, which also has to be addressed when double hashing is used in open

addressed hash tables. Issues 2 and 3 seem to be unique to use in Bloom

filters, and are only addressed by “enhanced double hashing.”

Issue 1 The standard issue with naive double hashing is that some possi-

bilities for b = h2(x) can result in many repetitions of the same index in the

computed sequence. Obviously, if b = 0, all the indices are the same, but if b

and m have non-trivial common factors, then there might also be repetitions

among the k computed indices. Consider, for example, b = m/2, in which

6.5. FAST INDEX COMPUTATION 95

algorithm " Enhanced Double/ Triple Hashing"

input x : "the element being added or queried"

input m : "number of bits in bit vector"

input k : "number of indices to compute"

output g[0 .. k - 1] : "array of indices"

uses h1, h2 , h3 : "hash functions"

begin

a := h1(x)
b := h2(x)
c := h3(x)
g[0] := a

for i := 1 .. k - 1

begin

a := (a + b) MOD m

b := (b + c) MOD m

b := (b + i) MOD m

g[i] := a

end

end

Figure 6.8: Algorithm for double, enhanced double, and triple hashing in
Bloom filters. For double hashing, include no parts in boxes. For triple hashing,
include the parts in single boxes. For enhanced double hashing, include the

parts in double boxes. Note that the double and triple hashing algorithms
are “naive” (see text).

case the sequence of indices alternates between only two possibilities. Even

thought these cases might seem rare, they can have a severe impact on the

accuracy of a Bloom filter.

Specifically, because of linearity in i, if gi = gi+j, then also gi = gi+cj for

any integral c.

There are two standard ways of dealing with this first issue, both of which

ensure that b is greater than zero and relatively prime tom. The first solution

is to choose m to be prime and compute the hash b such that 0 < b < m.

The second solution is to make m a power of two and compute b to be

odd. These concessions reduce the range of values for b, which reduces the

entropy flowing into index computation. For example, ensuring b is odd cuts

96 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

the possibilities in half. In terms of a fingerprinting Bloom filter, this reduces

the size of the fingerprint by one bit.

Implementation note: Despite a common assumption that a single ma-

chine instruction is always very fast, division/remainder operations are very

slow on modern machines. My testing has shown that if division can be

replaced by a conditional branch and some other ALU logic, it is worth the

replacement [24, Section 5.2].

Issue 2 The second issue with double hashing, specific to Bloom filters,

is that there are two ways to specify any set of indices generated by double

hashing, one “forward” and one “backward.” A key idea here is that unlike

the open-addressed hash table, the Bloom filter does not really care about

the order of the indices 1, treating them as a set rather than a sequence.

Given the pair 〈a, b〉, there is another pair 〈a′, b′〉 generating the same set

of indices, specifically,

a′ = a+ (k − 1)b (mod m)

b′ = m− b = −b (mod m)

(Note that the constraints to fix Issue 1 guarantee that b′ 6= b.)

In effect, this issue erases one bit of the fingerprint, because there are

only half as many sets of indices as there are 〈a, b〉 pairs. Eliminating the

redundancy by (further) limiting the range of b is similar; it actually reduces

the fingerprint size by one bit.

Issue 3 Finally, the double hashing Bloom filter is unusually prone to

partial overlapping of the k indices among two elements. In an ideal finger-

printing Bloom filter, two fingerprints that are close to the same are no more

likely to have indices overlapping than completely different fingerprints 2.

1Order matters only in the speed of negative queries, which can return upon encoun-
tering the first bit set to “0”.

2The paradoxically superior hash-extending or hash-reusing Bloom filters are not as

6.5. FAST INDEX COMPUTATION 97

By contrast, in a double hashing Bloom filter, two fingerprints that are close

to the same are likely to have many indices overlapping.

Consider the pairs 〈a, b〉 and 〈a′, b′〉 in which b = b′. In addition to the a′

for which all k indices overlap with those for 〈a, b〉 (a′ = a), there are are

two a′ for which k− 1 indices overlap (a′ = a− b and a′ = a+ b), and two a′

for which k − 2 indices overlap (a′ = a− 2b and a′ = a+ 2b), and two a′ for

which k − 3 indices overlap (a′ = a− 3b and a′ = a+ 3b),

Just as using fingerprinting in Bloom filter introduces an “anomalous”

case in which all indices overlap with higher probably than normal, the dou-

ble hashing design introduces “anomalous” cases in which three or more in-

dices overlap with higher probably than normal. In a standard Bloom filter,

the probability of two sets of indices overlapping by i indices would dimin-

ish exponentially in i, but in a double hashing Bloom filter, the probability

of overlapping by any quantity from three to k − 1 has virtually the same

non-negligible probability.

It is only considered anomalous partial overlap if at least three indices are

overlapping among two sets. The reason it needs to be three is tricky. There

is nothing about the structure of double hashing that makes overlapping by

two indices more likely than it is for a standard Bloom filter. Consider set

of indices i1, i2, . . . , ik and another set j1, j2, . . . , jk. Suppose i1 overlaps with

jx. What are the chances of i2 overlapping with jy for some y 6= x? Well,

for each such y there is a double hashing “b” that makes jy overlap with i2

(assuming m is prime; the argument is not exact if m is a power of two):

b = (i2 − i1)(y − x)−1 (mod m)

And the chances of b being the right one are the same as the chances of

an independent hash function generating the index directly. Thus, there is

nothing anomalous about overlapping by two indices with a double hashing

easy to use in this argument.

98 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

Bloom filter versus a standard Bloom filter. To overlap by three, the dou-

ble hashing Bloom filter must use the same b, which greatly increases the

probability of another overlap compared to an independent hash function.

Partial overlap must also be less than k indices of overlap, because the

case of all k overlapping has been covered by the fingerprinting false positive

rate and Issues 1 and 2. A consequence of these constraints is that Issue 3

only applies if k ≥ 4. If k = 3, the only overlap by at least three is complete

overlap.

The impact of this potential for partial overlap can be analyzed in terms

of the probability of all indices overlapping with a single previous addition

(call that probability g) and the proportion of bits set to “1” in the Bloom

filter (call that proportion p). Working from Equation 6.9, the false positive

rate should be approximately

f̃BF(m, v, k)⊕

(
g +

k−3∑
i=1

2gpi

)

In other words, other than the standard false positive rate of a Bloom

filter, we have the probability of all indices overlapping with a previous ad-

dition and the false positive probability due to partial overlapping. Partial

overlapping is relevant if 1 up to k−3 indices do not overlap with a previous

addition. Each case is twice as likely as all indices overlapping with a previ-

ous addition (2g). The chances of a partial overlap by k−i indices leading to

a false positive is the probability that the i non-overlapping indices happen

to have been set to “1” by other additions (pi).

For example, if we are using a k close to the one that minimizes the false

positive rate, p will be roughly 1/2. This means that the probability of a false

positive due to partial overlapping on the “left” is 1/2 + 1/4 + 1/8 + . . . times

g, just as on the “right” is 1/2 + 1/4 + 1/8 + . . . times g. Thus, the chances of

a false positive due to use of double hashing is, in a typical case, about three

times higher than it would be if not for partial overlapping.

6.5. FAST INDEX COMPUTATION 99

Note that this analysis does not include all the cases of partial overlap,

but should include the dominant cases—those in which b′ = b (or b′ = m −

b if allowed). For the less significant cases, consider b′ = b/2, b′ = b′/3,

etc. These allow up to k/2, up to k/3, etc. indices to overlap. The impact

on the false positive rate is not really significant compared to nearly all k

overlapping, especially if b′ = b/2 is precluded by requiring b to be odd for

Issue 1.

Analysis Combining the impacts of Issues 1 through 3 results in the follow-

ing approximate false positive rate for a Bloom filter using double hashing,

which is the impact of Issue 1, times the impact of Issue 2, times the impact

of Issue 3, times the probability of a two-index fingerprint false positive, “or”

a standard filter false positive:

f̃DHBF(m, v, k)
(def)
= 2 · 2 ·

(
1+2

k−3∑
i=1

pi

)
f̂FP(v,m2) ⊕ f̃BF(m, v, k) (6.17)

=

(
4 + 8

p− pk−2

1− p

)
f̂FP(v,m2) ⊕ f̃BF(m, v, k)

where p is the proportion of “1” bits (p
(def)
= 1− z ≈ 1− ẑBF(m, v, k)).

This assumes Issue 1 is resolved by ensuring b is odd; the corresponding

factor of two can be removed if m is prime instead of a power of two. In that

alternative case, simply ensuring b is non-zero has negligible impact.

Summary Computing Bloom filter indices with double hashing is extremely

fast, as shown in Section 6.5.6, but its accuracy is a bit short of what we

would expect from an ideal hash-extending Bloom filter with the same fin-

gerprint size. Also, it can only utilize a fingerprint up to two indices in size.

I address these limitations with the subsequent approaches.

100 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

6.5.2 Triple hashing

One way to counteract the issues associated with double hashing is to make

use of a larger fingerprint, so that the loss of accuracy from those issues is

less significant in absolute terms. There is a natural way to add another

index-sized hash, c, to the index computation (see Figure 6.8), which adds

a term of the next higher power to the equation describing the indices:

gi = a+ ib+
(i)(i− 1)

2
c (mod m) (6.18)

We call this natural generalization triple hashing. It is a generalization

because it is the same as double hashing in the case of c = 0.

Triple hashing actually does very little to address the three issues with

double hashing, aside from reducing their absolute impact on the false pos-

itive rate by starting with a larger fingerprint.

Issue 1 is certainly complicated by having a third variable in the equation.

To have significant self-overlap in indices, the values of b and c have to work

poorly together. For example, c = 0 is only a problem if b is 0, m/2, m/3, etc.

Similarly, b = 0 is only a problem if c is 0, m/2, m/3, etc. Putting the same

restrictions on either b or c as we placed on b in double hashing should keep

repeated indices near normal levels, at the same relative cost: up to one bit

of fingerprint.

Triple hashing does not fix Issue 2 either. It is just more difficult to see

that, as before, there are two ways of specifying each set of indices. Distinct

triples 〈a, b, c〉 and 〈a′, b′, c′〉 generate the same set of indices when

a′ = a+ (k − 1)b+
(k − 1)(k − 2)

2
c (mod m)

b′ = −b− (k − 2)c (mod m)

c′ = c

6.5. FAST INDEX COMPUTATION 101

One can check by hand that as a transformation, this relationship is its

own inverse. One can also push it through the algorithm to see that the

same indices are generated, except in reverse order. It is interesting to note

that k−2 is used in b′ instead of k−1, which is because in the algorithm (see

Figure 6.8), the reassignment to b comes after its use in the reassignment

to a. The value assigned to b on the i = k − 1 iteration is never actually

used; the value on the i = k − 2 iteration is the last one used to modify a.

Also notice that c′ is not the negation of c, which is essentially because the

negative of a negative is a positive. (b′ is considered “negative”.)

Issue 3 is similarly not corrected by triple hashing. Starting with a 〈a, b, c〉

triple, if we iterate through the loop once, computing the first index, we

get a triple 〈a + b, b + c, c〉 that as a starting triple would overlap by k − 1

indices with the original. Like with double hashing, we can keep iterating to

compute cases of k − 2, k − 3, . . . indices overlapping.

Consequently, the approximate false positive rate for a triple-hashing

Bloom filter is as the double-hashing Bloom filter, corrected for a fingerprint

the size of three indices:

f̃THBF(m, v, k)
(def)
=

(
4 + 8

p− pk−2

1− p

)
f̂FP(v,m3) ⊕ f̃BF(m, v, k) (6.19)

where p is the proportion of “1” bits.

Summary Triple hashing was originally motivated by utilizing all available

hash information when that’s more than two indices worth [24, Section 3.4],

and it is still not a bad choice when that is the case.

6.5.3 Improved double hashing

We can use the triple hashing algorithm to make a modest improvement to

the double hashing algorithm. I call this improved double hashing, but

it is mostly presented to motivate enhanced double hashing, which has

102 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

superior accuracy.

This algorithm is not directly in Figure 6.8, but is simply triple hashing

modified so that c is a suitable constant, such as 1. The formula for indices is

the same as for triple hashing, but with the constant for c substituted. This

is a double hashing algorithm because only two indices of hash are needed.

The advantage this technique has over basic double hashing is that it

eliminates Issue 1, assuming a suitable constant such as 1 is used. Basically,

if we fix a non-problematic value for c, no values for b are problematic. For

example, if b starts at zero, the first two indices are the same but almost

certainly no others, and the probability of the first two indices being equal

is the same as in a standard Bloom filter (1 in m). Mathematically, the im-

provement to double hashing makes it no longer true that gi = gi+j implies

gi = gi+cj, because the new scheme has non-linear dependence on i.

Like triple hashing, however, this scheme does not address Issues 2 and 3.

We can show Issue 2 still is a problem using the same construction from

triple hashing, because c = c′ is compatible with c being a constant. The

demonstration of Issue 3 transfers just as simply.

The approximate false positive rate is similar to the double hashing Bloom

filter, just without the factor of two due to Issue 1:

f̃IDHBF(m, v, k)
(def)
=

(
2 + 4

p− pk−1

1− p

)
f̂FP(v,m2) ⊕ f̃BF(m, v, k) (6.20)

where p is the proportion of “1” bits.

Summary Improved double hashing is interesting from an analytical stand-

point, but enhanced double hashing is better.

6.5.4 Enhanced double hashing

With a small tweak to the double hashing algorithm, all three issues iden-

tified for standard double hashing in Bloom filters are virtually eliminated.

6.5. FAST INDEX COMPUTATION 103

We call this version enhanced double hashing.

The enhancement is that after computing the ith index, we adjust b by i

in computing the next index. Thus, b varies by a different amount between

each index. See Figure 6.8 for the exact algorithm. The computed indices

satisfy the following equation:

gi = a+ ib+
(i)(i2 − 1)

6
(mod m) (6.21)

Enhanced double hashing does not suffer from Issue 1, for the same

reasons that improved double hashing does not.

The advantage of enhanced double hashing is that it does not suffer from

Issues 2 or 3, except when k ≤ 3. For illustration purposes, suppose h1(x) =

0 and h2(x) = ω, where ω is large (ω � k3). Suppose m is much larger

than ω, such as m ∼ ω2. Thus, each kind of double hashing starts with

a = 0 and b = ω, and we don’t have to worry about any duplicate indices

or even “wrapping around” with respect to m. The first five indices (k = 5)

generated by plain double hashing on 〈0, ω〉 are

~g = [0, ω, 2ω, 3ω, 4ω]

Starting with 〈4ω,m−ω〉 generates the same indices. The pair 〈ω, ω〉 overlaps

by four, 〈2ω, ω〉 overlaps by three, etc.

For improved double hashing (c = 1), the indices are

~g = [0, ω, 2ω + 1, 3ω + 3, 4ω + 6]

Starting with 〈4ω+6,m−ω−3〉 generates the same indices. The pair 〈ω, ω+1〉

overlaps by four, 〈2ω + 1, ω + 2〉 overlaps by three, etc.

For enhanced double hashing,

104 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

g0 = a0 = 0 b0 = ω

g1 = a1 = ω b1 = ω + 1

g2 = a2 = 2ω + 1 b2 = ω + 3

g3 = a3 = 3ω + 4 b3 = ω + 6

g4 = a4 = 4ω + 10 b4 = ω + 10

If we try to generate the same set of indices by working backwards, we

fail. For it to work, we would start with the pair that generates the last two

indices in reverse order:

g′0 = a′0 = 4ω + 10 = g4 b′0 = m− ω − 6

g′1 = a′1 = 3ω + 4 = g3 b′1 = m− ω − 5

g′2 = a′2 = 2ω − 1 6= g2 b′2 = m− ω − 3

g′3 = a′3 = ω − 4 6= g1 b′3 = m− ω

g′4 = a′4 = −4 6= g0 b′4 = m− ω + 4

Thus, strict reverse order fails, and it is easy to see that all other strate-

gies fail. First, we know we can’t manipulate the small trailing constants to

interfere with ω-scale differences. Similarly, we cannot manipulate the small

factors of ω to interfere with m-scale differences. For example, if we try to

choose numbers that overlap with the above g0, g2, g4 in that order, it’s easy

to see that the next index cannot be g1 or g3 from above. Thus, enhanced

double hashing does not seem to suffer from Issue 2.

If we try to overlap with most of the indices, we also fail. Consider trying

to overlap with the g1 through g4 from 〈0, ω〉, in that order:

g′′0 = a′′0 = ω = g1 b′′0 = ω + 1

g′′1 = a′′1 = 2ω + 1 = g2 b′′1 = ω + 2

g′′2 = a′′2 = 3ω + 3 6= g3 b′′2 = ω + 4

g′′3 = a′′3 = 4ω + 7 6= g4 b′′3 = ω + 7

g′′4 = a′′4 = 5ω + 14 b′′4 = ω + 11

6.5. FAST INDEX COMPUTATION 105

Based on the assumptions about ω and m, there are no better prospects

for significant overlap. Enhanced double hashing does not seem to suffer

from Issue 3.

Probably the only exception to these observations is overlapping by three

indices. For example, if k = 3, enhanced double hashing is the same as

improved double hashing (where c = 1), and it suffers from Issue 2 in than

case. (Issue 3 only applies if k ≥ 4.) For a similar reason, partial overlap by

three indices (limited form of Issue 3) is possible for k ≥ 4. These effects

should only be noticeable when k is three, four, or maybe five, and only for

rather small Bloom filters (see Figure 6.10).

Note that if k ≤ 2, then any of these double hashing schemes is equiva-

lent to a standard Bloom filter. The only difference is adding the two hash

values to compute the second index, which has no effect on accuracy (as-

suming quality hashing) and minimal effect on speed.

The approximate false positive rate with enhanced double hashing is that

of a fingerprinting (or hash-extending) Bloom filter with a fingerprint the

size of two indices:

f̃EDHBF(m, v, k)
(def)
= f̂FP(v,m2) ⊕ f̃BF(m, v, k) (6.22)

Summary Except for some small effects when k is around three or four,

enhanced double hashing corrects all the issues identified with basic double

hashing.

6.5.5 Related work: exponential double hashing

Smith, Heileman, and Abdallah propose two forms of exponential variants

of double hashing, the first of which has this schema [74]:

gi = a+ bi (mod m) (6.23)

106 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

This suffers from Issue 1, because b needs to be relatively prime to m.

The sequence also has repetitions, however, if bi = 1 (mod m) for some

b and some i greater than zero and less than k. This is not uncommon;

in particular, there is always b = −1 (mod m) which only generates two

unique indices. That could be specifically excluded, but there are likely to be

others generating only three unique indices, which is a significant problem

for reasonably accurate Bloom filters.

This scheme mostly passes our other tests, however. It does not suffer

from Issue 2, and it only suffers from the secondary form of Issue 3, in

which half or a third of indices overlap due to b′ = b2, etc. This form of

Issue 3 is only an issue for extremely accurate Bloom filters, however.

To get full-length sequences, Luo and Heileman designed an “improved”

exponential scheme [61]:

gi = a+ bri (mod m) (6.24)

where m is prime and r is a primitive root of m.

Applying this scheme to Bloom filters results in some accuracy problems.

Though this “improved” version guarantees each sequence of k indices con-

tains no repetitions, it does suffer from the full version of Issue 3, by letting

a′ = a and b′ = br, or b′ = br2, or b′ = br−1, etc. It also technically suffers

from Issue 1 since b cannot be zero, but this is the insignificant form of Is-

sue 1, where m is prime. As in the previous case, it does not suffer from

Issue 2.

Summary The improved exponential scheme might have some advantages

if the hash fingerprint quality is dubious, but otherwise, enhanced double

hashing is better for computing Bloom filter indices. Using Issue 3, I have

analytically bounded its accuracy to be worse than what enhanced double

hashing seems to live up to (see validation). It will also tend to be slow,

because it must use prime m and cannot utilize my optimization for addition

6.5. FAST INDEX COMPUTATION 107

in modular arithmetic.

6.5.6 Empirical validation

Accuracy Figure 6.9 shows expected and observed false positive rates of

Bloom filters using the various techniques for fast index computation, in an

interesting example range. For each technique, the observed false positive

rate is close to that predicted by the formula given, though there is a small

unexplained divergence with triple hashing and smaller v. This could be an

unknown issue with triple hashing that causes it to fall short of the ideal for

a three-index fingerprint even sooner than would be explained by Issues 1

through 3. Nevertheless, if enough fingerprint is available, triple hashing

offers a clear accuracy advantage over enhanced double hashing, which is

fundamentally limited by working with a two-index fingerprint.

The enhanced double hashing Bloom filter is of particular interest, since

I claim its accuracy should be similar to the ideal for a Bloom filter based on

a two-index fingerprint. In the enhanced double hashing samples obtained

for Figure 6.9, about half were within 1% of the prediction/ideal and none

were more than 2.6% worse nor more than 2% better. About two thirds

were worse than ideal.

For the results of Figure 6.9 to scale naturally, based only on the v/m

ratio, the size of the fingerprint would need to be scaled as the size of

one index plus 13 bits, rather than the size of two indices. As described

in Section 6.4.2, the false positive potential due to a two-index fingerprint

diminishes steadily as the size of the Bloom filter is increased. The impact

of issues associated with fast index computation also diminish, since they

are rooted in the possibility of a fingerprint false positive. To show a graph

like Figure 6.9 for 1 MB Bloom filters instead of 1 KB Bloom filters would

have taken about a thousand times as many Bloom filter queries, because

the false positive rates at which the techniques are distinguishable are about

108 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

1e-06

1e-05

0.0001

0.001

200 250 300 350 400 450 500 550 600

Fa
ls

e
po

si
ti

ve
ra

te

v

Due to two-index fingerprinting
Double, Expected
Double, Observed
Imp. Double, Expected
Imp. Double, Observed
Enh. Double, Expected
Enh. Double, Observed
Triple, Expected
Triple, Observed

Figure 6.9: Comparison of false positive rates of Bloom filters with fast index
computation. Lower is better. For all data points, m = 8192 and k = 13, the
best for v = 450. Each “Observed” data point represents enough queries to
get 10 000 false positives. After the v additions, each structure was only used
for v queries, and then a new one with the same configuration was built for
additional queries. The additions and queries were simulated starting from
pseudorandom fingerprints, derived by mixing two pseudorandom generators
and a large, static pool of random data (compressed Linux kernel). “Double”
refers to double hashing, in Section 6.5.1 and Equation 6.17. “Imp. Double”
refers to improved double hashing, in Section 6.5.3 and Equation 6.20. “Enh.
Double” refers to enhanced double hashing, in Section 6.5.4 and Equation 6.22.
“Triple” refers to triple hashing, in Section 6.5.2 and Equation 6.19.

6.5. FAST INDEX COMPUTATION 109

a thousand times lower.

Figure 6.10 shows the relationships between problem scale, hash factor

(m/v), and which techniques are appropriate. For example, if m/v = 20

(best k = 14) and m = 218, then that lies in the “enhanced double OK”

region, which means that enhanced double hashing or triple hashing would

have no significant impact on the false positive rate, but double hashing

probably would.

Speed Figure 6.11 shows how little per-k computation is needed for Bloom

filters utilizing one of my fast index computation techniques. The Bloom

filter only needs to be larger than L2 cache for the time per operation to

become dominated by waiting for access to the bits in the table. (Changing

the memory size does not affect the complexity of what is computed, because

indices are put in a machine word in each case.)

The top graph of Figure 6.11 shows some small differences in time among

the various double and triple hashing techniques. However, these results

are rather fragile to small changes in implementation and compiler options.

Generally, the per-k computation time for double hashing is slightly less than

enhanced double, which might be slightly less than triple hashing. In some

implementations, though, their speed is indistinguishable.

To implement the hash-extending Bloom filter in those tests, a Jenkins

3x64-bit mix function was used to generate successive 3-index tuples start-

ing from the first three, given by the fingerprint. It is fast enough to be

cheaper than jumping to the next level of the memory hierarchy, by increas-

ing Bloom filter size. Strangely, though, the absolute time difference be-

tween using basic hash-extending and enhanced double hashing increases

for larger Bloom filters. For a purely serial processing core, this should not

happen, but our cores are superscalar and able to execute instructions out

of order. The extra hash computation in the hash-extending implementation

must be interfering with efficient pipelining/parallelization of instructions

110 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

0 10 20 30 40 50

lg
m

=
nu

m
be

r
of

bi
ts

in
an

in
de

x

Best k

m/v

Double Hashing OK

Enhanced Double OK

Triple Hashing OK

Use Fingerprinting or Standard Bloom Filter

Figure 6.10: Regions of configurations in which fast index computation tech-
niques have low impact on false positive rate. This graph shows the “cheapest”
technique among double, enhanced double, and triple hashing that has less
than a 1% impact on the false positive rate for a given configuration, if there is
one. We assume the k that minimizes the false positive rate is used in each case,
which is shown across the bottom. The corresponding m/v is shown across
the top. The boundaries were derived using the assumption that use of the
best k will make the proportion of bits set to “1” approximately half. Using
z = p = 0.5 and m/v = k/ ln 2 simplifies the formulas enough to set the “ex-
tra” false positive rate associated with each technique equal to 0.01 times the
standard Bloom filter false positive rate, and solve for m. The same graph based
on expected hash omissions instead of false positive rate would be similar but
would have a different correspondence between best k and m/v; I would expect
these results based on best k to match more closely for expected hash omissions
than based on m/v.

6.5. FAST INDEX COMPUTATION 111

0

10

20

30

40

50

60

70

80

0 5 10 15 20

Ti
m

e
pe

r
ad

d
(n

an
os

ec
on

ds
)

k

m=216 Hash-extending
m=216 Triple
m=216 Enhanced Double
m=216 Improved Double
m=216 Double

0

100

200

300

400

500

600

0 5 10 15 20

Ti
m

e
pe

r
ad

d
(n

an
os

ec
on

ds
)

k

m=231 Hash-extending
m=231 Enhanced Double
m=226 Hash-extending
m=226 Enhanced Double
m=216 Hash-extending
m=216 Enhanced Double

Figure 6.11: Comparison of the ADD time for Bloom filters of various sizes
with various index computation methods. Lower is better. All cases in the top
graph use m = 216, which is small enough (8KB) to fit in the processor’s closest
cache (32KB L1 data cache). It should capture the minimum time required by
each technique. The bottom graph uses various Bloom filter sizes, and includes
a series from the top graph. It shows how the time just to access bits of the table
dominate the time required to ADD to larger Bloom filters. Fingerprints to add
were generated pseudorandomly, and the measured time for generating them
has been removed from the times shown, even though it should take longer to
compute larger fingerprints. Each point is the average of tens or hundreds of
millions of operations. Tests were compiled with gcc 4.4.3 (-O3) and run on
a 64-bit Linux system with Intel Xeon X5677 CPUs (3.47GHz, 32KB L1 data
cache, 12MB L3 cache). More description is in referencing text.

112 CHAPTER 6. BLOOM FILTERS (BITSTATE HASHING)

between multiple indices, and thus revealing more memory latency time.

This seems to indicate another advantage of the tight loops in my fast index

computation schemes.

I did not show random QUERY performance here because they level off

around k = 5, because they can short-circuit when a “0” bit is encountered.

Positive QUERYs must inspect all k bits, but they usually use conditional

branches, which make them a little slower than “blind” ADD operations.

Thus, the ADD is the best way to expose differences in speed for the vari-

ous techniques.

Many more empirical results, including results using non-power-of-2 m,

are in my relevant publications [24, 23].

6.5.7 In practice and future work

These techniques for fast index computation do not quite match how people

should be using Bloom filters in practice. In fact, Figure 6.10 should not be

seen as great practical advice—more like a sketch to help understand the

techniques that have been presented. What usually happens in practice is

that the hash fingerprint to work with comes from a stock hash function,

which returns some number of words of output. An index is not likely to be

exactly a word in length, nor half a word, etc., so the fingerprint is not likely

to be a whole number of indices of length.

For the best accuracy, one should not be throwing away hash information

in order to adhere to the techniques shown here. More research is needed

in order to answer questions like, “What should I use if my hash fingerprint

is the size of two and a half indices and I don’t need it to be extremely fast?”

The answer is likely to be something based on triple hashing, possibly with

enhancement like enhanced double hashing. The design space opens up a

lot when you consider fingerprints that are not a whole number of indices,

and that should be explored, but not in this dissertation.

6.6. SUMMARY 113

Also, the techniques I have described are optimized for implementation

in software. I am sure the hardware logic required for implementing Bloom

filter hash functions could be reduced by using fingerprinting and a simple

bitwise scheme for deriving indices from it. There does not seem to be much

demand for such an improvement, however, and it is outside my expertise.

6.6 Summary

Bloom filters have a rich history, in verification and elsewhere. Though there

are more compact over-approximations of sets available, Bloom filters have

properties that make them dynamically flexible, and I have highlighted those

traits. I have also improved the implementation and analysis of Bloom filters

in many ways. I have identified some issues with methods for optimizing

Bloom filters by choosing the best k, and have described how to choose the

best k when a Bloom filter is used as a visited set. I have shown how to

reduce the hashing requirements of Bloom filters with minimal impact on

the false positive rate. Despite the various improvements, there is no “best”

Bloom filter design, because the needs of different applications are so varied.

What I have presented, however, are well-described tools in the toolbox for

implementing compact, fast, and accurate Bloom filters. For my adaptive

storage scheme in Chapter 11, I draw from an unusual tool in that toolbox,

the hash-reusing Bloom filter, to fulfill a need for a Bloom filter with access

to limited hash information.

CHAPTER 7

Compacted tables (Hash compaction)

A compacted hash table (our name for the data structure underlying “hash

compaction”) is an open-addressed hash table of hash values in which the

storage address is independent of the hash value to store there. In other

words, whenever an element is ADDed or QUERYed, some hash information

computed from that element is used to determine the first address to probe

and other hash information is used as the value to store. Because of collision

resolution, the value might not be stored in the first location probed. Thus,

the starting address is not entirely encoded in the location of a value, so

the structure is inherently inexact. No exact structure can have the same

essential optimization, though the Cleary table is close (Chapter 9).

Bibliographic Notes Like the Bloom filter, the compacted hash table has

probably been independently discovered/invented by several computer sci-

entists over the years. Morris had the insight to use independent hashes for

location and value in his “virtual scatter tables” [64], as Cleary does later in

his compact hash table [14] (see Chapter 9). The “approximate membership

tester 2” of Carter et al. [13] is a compacted hash table. For state storage in

a model checker, Wolper and Leroy describe a “hashcompact” scheme that

does not separate the hashing and, thus, has poor asymptotics [84]. Stern

and Dill were first to apply the notion of separate computation of the value

and location to state storage [77] and then made the under-appreciated im-

115

116 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

provement of adding Amble and Knuth’s ordered hashing [78, 2]. Stern’s

dissertation features a detailed mathematical analysis [77, 75].

Contributions This chapter mostly serves to explain the interesting and

nuanced behavior of this solution, by gathering analyses that explain certain

aspects of the structure. Nevertheless, I describe how the false positive rate

could be improved if all elements to be added were known in advance, and

I mention a somewhat standard optimization of the compacted table meta-

data, which was not mentioned in Stern and Dill’s work nor used in their

implementation.

7.1 Description

7.1.1 Basics

The structure is composed of c cells, each storing a hash value of b = bm/cc

bits. Initially, all cells are unoccupied, and in the past, implementors have

used an extra bit per cell to indicate whether it is occupied. This bit is not

needed, of course, if we reserve the zero hash value to mean “unoccupied”

and ensure the hash function giving values to store does not return that

value. Mathematically, the hash function for values to store will be hV : U →

{1, . . . , s} where s = 2b−1. Freeing that bit to be used in the hash value cuts

the false positive rates nearly in half.

Another hash function computes the first address to probe for storing the

value: hA : U → {0, . . . , c− 1}. That hash function needs to be independent

of hV for the structure to be asymptotically compact. Depending on how

collision resolution is done, another hash function might be used, but the

issue is complicated enough for detailed discussion (next).

7.1. DESCRIPTION 117

7.1.2 Collision resolution

If ordered hashing is not used, any collision resolution scheme based on

open-addressing that does not move elements after they have been placed

(linear probing, quadratic probing, double hashing, etc.) can be used. The

scheme used determines what is required of the hash functions that deter-

mine the probe sequence. For example, linear or quadratic probing only re-

quire a the starting address from hA, while double hashing requires a starting

location and an increment. (The increment should satisfy constraints given

in Sections 5.1 and 7.1.4.) Nevertheless, double hashing will usually be the

best choice thanks to negligible clustering [34]

But ordered hashing offers significant accuracy improvements, with the

complication that we need to be able to move elements down in their probe

sequence after they have been added. This is a significant complication be-

cause we cannot look at a value in some location and determine — defini-

tively — the hash information that gives its probe sequence. However, we

don’t need to know what the whole probe sequence has been, just how to

find the next location in that sequence. Linear probing is good for this, since

the next probe location is always the subsequent address, but we should

avoid the clustering problems of linear probing if we can. Quadratic prob-

ing, for example, would not work because it requires knowledge of how far

an entry is in its probe sequence to determine how far away the next probe

is.

One of the under-emphasized Stern and Dill insights in applying ordered

hashing to hash compaction was that double hashing could be used if the

increment between probes is determined by the hash value stored. Thus, we

can determine the next probe location for a value stored in some location,

despite not knowing its original probe location. Assuming some method of

turning stored hash values into probe increments (see Section 7.1.4), this

design is what we consider the standard design for a compacted hash table.

118 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

7.1.3 Ordered hashing

Now that we have a collision resolution scheme that allows stored values

to be moved down their probe sequence, let us consider how ordered hash-

ing uses this to increase accuracy. After all, ordered hashing was originally

designed as an optimization for negative QUERYs, and in the visited set us-

age paradigm, negative QUERYs become ADDs, which might be slowed down

by ordered hashing. Thus, ordered hashing confers no time benefit in the

visited set usage paradigm.

Ordered hashing maintains the invariant that each location contains the

“largest” value that was considered for storage there. Instead of always

ADDing to the first empty cell in the probe sequence, the value is placed in

the first cell that contains a “smaller” value if that is encountered before an

empty cell. If replacing a smaller value, the ADD continues with that smaller

value, proceeding to the next location in its probe sequence.

This invariant gives each probe to an occupied cell about a 50/50 chance

of ruling out something being in the structure, because if the new element

is larger than what is stored there, then the invariant says that it has not

been added already. This can significantly reduce the number of probes

required to resolve a negative query, which likewise reduces the number of

opportunities for the hash value of a new element to collide due to random

chance and yield a false positive.

Consider, for example, checking a new element against a compacted hash

table that is 95% full. If it is not using ordered hashing, we expect to com-

pare the hash value against about 20 others (effectively random) before en-

countering an empty cell, each with a 1/s chance of causing a false positive.

With ordered hashing, the first one probed has a 1/s chance of matching ran-

domly, but it also has about a 50% chance of being smaller and eliminating

any remaining possibility of a false positive query. In the case of subsequent

probes, they have the same chance of matching and a similar probability of

7.1. DESCRIPTION 119

eliminating remaining possibilities of a false positive.

An Interesting Phenomenon An interesting behavior of hash compaction

with ordered hashing, which no one else has described, is the case in which

an element is added to the structure, it is recognized as new, but the number

of cells occupied in the structure does not increase. Suppose the value to

add is larger than the value currently occupying the target location. This

definitively indicates the element being added has not been added before.

To maintain the structural invariant of ordered hashing, the larger value re-

places the one there, and the ADD procedure continues with the replaced

value at its next probe location. Now suppose that at that next probe lo-

cation, the hash value is the same as what we are now attempting to add.

If that’s the case, we can stop; there is no need to continue searching and

replacing until an empty cell is encountered. We have altered the structure

to include the element we wanted to add, but without occupying an addi-

tional cell. Instead, values were moved around the structure and two with

the same value collided and were essentially merged.

In hash compaction without ordered hashing, the number of occupied

cells equals the number of affecting additions. With ordered hashing, we

have just seen how the number of affecting additions can be larger. In fact,

for a given number of unique additions, the number of occupied cells is

reasonably close, whether or not ordered hashing is used, but the lower false

positive rate with ordered hashing causes a correspondingly higher number

of the unique additions being recognized as new and affecting the structure.

(More in Section 7.2.3.)

7.1.4 Implementation notes

• As discussed above, we can eliminate the need for a bit to indicate

whether a cell is occupied by reserving the “0” hash value. This makes

the range of our hash function 2b − 1 values. The easiest way to do

120 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

this is let its range be 2b values and use a second function if the first

returns “0”. If the second returns “0,” just use “1.” Or one can skip

the second function and just use “1” whenever the function returns

“0.” Since b needs to higher than 10 to have higher accuracy than a

competing Bloom filter, the impact of such a hack is negligible.

• I discuss how to compute appropriate double hashing increments in

Section 5.1, but now we have the potential complication of deriving

these from the stored values. Tests indicate that using a hash function

to derive these values confers no measurable advantage over using

them almost directly. One should, however, ensure near minimal in-

formation loss in deriving an increment appropriate for the number of

cells. For example, to guarantee an odd increment, shift left by one

and add 1.

7.1.5 Maximum occupancy and configuration

Assuming we know the number elements to be added, v, a naive way to

configure the structure is to use b = bm/vc bits per hash value. There are

two problems with that. First, the number of cells should be a prime or a

power of two (Sections 5.1 and 7.1.4). Second, we should not allow the

structure to fill beyond some constant occupancy less than 100%. This will

be critical to the accuracy being asymptotically compact (Section 7.2.5), but

there’s also an issue with execution speed:

The expected number of probes per operation for a double-hashed table

is known to be close to (c+ 1)/(c+ 1− n) [58]. If we allow the structure to

fill up, the average number of probes is

1

c

c−1∑
i=0

c+ 1

c+ 1− i
c�0

≥,≈ 1

c

∫ c−1

0

c+ 1

c+ 1− i
di =

c+ 1

c
ln
c+ 1

2

c�0

≥,≈ ln
c

2

Thus when a double-hashed open-addressed hash table (such as a com-

7.2. ACCURACY ANALYSIS AND VALIDATION 121

pacted table) is allowed to fill up, the average number of probes per addition

is expected to be logarithmic in the number of cells. This makes the time to

fill up super-linear in the number of cells. Filling up hurts accuracy as well,

as discussed in Section 7.2.1.

I usually use a maximum occupancy of no more than 99.8%. That is easy

to follow if we choose the amount of memory and number of cells based on

other parameters, but configuring to use no more than some predetermined

amount of memory (m bits) is more nuanced, even knowing the number of

elements to be added (v). We can start by computing the minimum number

of cells needed, c0, which is the smallest prime or power of two not smaller

than v/0.998. We can then chose the largest integer number of stored value

bits b = bm/c0c and use that to potentially boost the number of cells to

its final value, the greatest prime or power of two not greater than m/b.

Except in rare cases, this procedure will give the configuration with the best

accuracy.

7.2 Accuracy analysis and validation

Ulrich Stern has analyzed this structure in some detail [75, Appendix A],

but I consider more aspects of the structure and in more variations to aid in

understanding the behavior of compacted hash tables.

7.2.1 By collisions

One of Stern’s basic observations allows us to approximate the false positive

rate of some compacted hash tables given the average number of collisions

for a negative QUERY. A collision occurs each time the hash value being

QUERYed is compared to one already in the table. To be most precise, we

would use the probability distribution of collisions per negative QUERY to

determine the false positive rate, but we can approximate that by using only

the expected collisions per negative QUERY, which we call x̂. With s = 2b− 1

122 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

possible hash values, each collision results in a false positive with probability

s−1. We call this false positive rate approximation f̃HCx̂:

f̃HCx̂(x̂, s)
(def)
= 1−

(
1− s−1

)x̂ (7.1)
s�0

≥,≈ 1− e−x̂s−1

s�x̂
≈ x̂s−1

Using the result from Section 7.1.5, we can now conclude that allowing

the structure to fill up is bad for accuracy. Similarly, our asymptotic accuracy

argument in Section 7.2.5 will depend on not filling up.

7.2.2 Unordered

When not using ordered hashing, the expected collisions per negative QUERY

is one less than the expected probes per negative QUERY. Expected probes

for double hashing is known to be close to (c + 1)/(c + 1 − n) [58], where

c is the number of cells and n is the number occupied. (When not using or-

dered hashing, the number of occupied cells equals the number of affecting

additions.) Thus, when not using ordered hashing,

x̂UHC ≈
c+ 1

c+ 1− n
− 1 =

n

c+ 1− n
(7.2)

Thus, in terms of the occupancy, α = n/c, for large n,

x̂UHC
n�0
≈
(
α−1 − 1

)−1 (7.3)

The validity and quality of Equation 7.2 is confirmed in the “Unordered,

Theoretical” and “Unordered, Experimental” data of Figure 7.1.

Using the expected collisions, the approximate false positive rate for

7.2. ACCURACY ANALYSIS AND VALIDATION 123

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

co
lli

si
on

s
pe

r
ne

g.
qu

er
y

(x̂
)

(l
og

sc
al

e)

Proportion of cells occupied (α)

Unordered, Theoretical
Unordered, Experimental
Unordered, To Fit F.P. Rate
Ordered, Theoretical
Ordered, Experimental
Ordered, To Fit F.P. Rate

Figure 7.1: Average collisions per negative query, expected and observed, for
“unordered” and “ordered” compacted table designs, at various occupancies. Ex-
perimental values came from instrumenting our Java implementation to count
collisions and performing 10 million new queries to a structure with each of
the given occupancies. “To Fit F.P. Rate” values are based on false positive
rate observations (see Figure 7.2) and inverting Equation 7.1. In each case,
c = 2 000 003 cells and b = 12 bits (⇒ s = 4095).

unordered hash compaction should be

f̃UHC(n, c, s)
(def)
= 1−

(
1− s−1

)n/(c+1−n) (7.4)
s�0

≥,≈ 1− e−ns−1(c+1−n)−1

s�n
≈ n

s(c+ 1− n)

The validity and quality of this formula is confirmed in the “Unordered,

Theoretical” and “Unordered, Experimental” data of Figure 7.2. In fact, if

we use the observed false positive rates to deduce the expected number

124 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

1e-05

0.0001

0.001

0.01

0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
ti

ve
ra

te
(l

og
sc

al
e)

Proportion of cells occupied (α)

Unordered, Theoretical
Unordered, Experimental
Ordered, Theoretical
Ordered, Experimental
Static, Theoretical
Static, Experimental

Figure 7.2: False positive rates, expected and observed, of three compacted
table designs, at various occupancies. Experimental results came from perform-
ing 10 million new queries to a structure with each of the given occupancies
and recording the proportion that returned positive. In each case, c = 2 000 003

cells and b = 12 bits (⇒ s = 4095).

of collisions per negative QUERY (by inverting Equation 7.1), we get the

“Unordered, To Fit F.P. Rate” data of Figure 7.1, which matches both the

analytically expected and experimentally observed collisions per negative

QUERY.

7.2.3 Ordered, false positive rate

Using ordered hashing can reduce the expected collisions and false positive

rate dramatically, but the analysis is more complicated [75, Appendix A.3].

Here is Stern’s approximation of the false positive rate for ordered hash

compaction, when k out of c cells are occupied and there are s possible hash

7.2. ACCURACY ANALYSIS AND VALIDATION 125

values to store:

f̃OHC(k, c, s)
(def)
=

2

s
(Hc+1 −Hc−k)−

2c+ k(c− k)

cs(c− k + 1)
(7.5)

where Hi =
∑i

j=1 j
−1 is the ith harmonic number.

The validity and quality of this formula is confirmed in the “Ordered,

Theoretical” and “Ordered, Experimental” data of Figure 7.2. However, we

introduced k to refer to number of cells occupied rather using n, because

in an ordered compacted hash table, the number of affecting additions can

exceed the number of occupied cells. (Recall the “interesting phenomenon”

in Section 7.1.3.) This formula is fine for a post facto analysis since k can

be counted at run time. For an a priori analysis, the a priori expected af-

fecting additions to an unordered compacted table is a good overestimate of

how many cells will be occupied in an ordered compacted table. This is con-

firmed by Figure 7.3, which compares these quantities after subtraction from

the number of unique additions; observe that “Unordered, Omissions,” both

expected and observed, are below the “Ordered, Unique minus Occupied”

observations—when the values dominate sampling error.

There is a reason we did not use f̃HCx̂ to derive the false positive rate

for ordered compacted tables. If we use the observed false positive rates to

deduce the expected number of collisions per negative QUERY (by inverting

Equation 7.1), we get the “Ordered, To Fit F.P. Rate” data of Figure 7.1,

which does not match the “Ordered, Experimental” data. This implies that

the false positive rate using ordered hashing is not explained just by the

number of collisions during queries, as Stern’s approximation (Equation 7.5)

takes into account.

The reason the false positive rate using ordered hashing is worse than is

explained by the average number of collisions is because the increments for

double hashing are determined by the values to store. Recall that this de-

pendency exists to allow values to be relocated down their probe sequence

126 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

1

10

100

1000

0 500000 1e+06 1.5e+06 2e+06

A
pp

lic
ab

le
nu

m
be

r
of

ad
di

ti
on

s
(l

og
sc

al
e)

Unique additions (v) into 2 000 003 cells

Unordered, Omissions, Expected
Unordered, Omissions, Observed
Ordered, Omissions, Expected
Ordered, Omissions, Observed
Ordered, Unique minus Occupied

Figure 7.3: Omissions and non-omissions, observed and expected, in two de-
signs of compacted tables. The given number of unique elements was added
once to the given structure and the number of affecting additions and num-
ber of occupied cells were tracked. Hash functions were given a new seed for
each set of additions. “Omissions” is unique additions minus affecting addi-
tions. “Unique minus occupied” is unique additions minus occupied cells. By
construction, “Unique minus occupied” for the unordered table would be the
same as its “Omissions.” In each case, c = 2 000 003 cells and b = 12 bits
(⇒ s = 4095).

7.2. ACCURACY ANALYSIS AND VALIDATION 127

after they have been added. We could test this claim if we could remove this

dependency and observe the resulting false positive rate. One way to do this

is by constructing a static compacted hash table, in which every element

to be added is known ahead of time and elements are added in (decreas-

ing) order of stored hash values. Adding in this order precludes relocation

of elements and allows double hashing increments to be determined inde-

pendently of stored values. The “Static, Experimental” data in Figure 7.2

confirms that this new variation has noticeably lower false positive rates.

The “Static, Experimental” and “Static, To Fit F.P. Rate” data in Figure 7.4

confirm that, with the dependency removed, the average collisions per neg-

ative QUERY explain the false positive rate.

The static compacted hash table cannot be used as a compact visited

set, but could find applications in compact “summaries,” which are often

based on Bloom filters [28]. However, Bloom filters are only close to optimal

accuracy for a given size if compressed for transit [62].

7.2.4 Ordered, collisions

The false positive rate of the static ordered table is explained by the expected

collisions per negative QUERY, but I have not found a simple analysis that

predicts this quantity. Here I present such an analysis: let α = k/c be the

proportion of cells occupied and let p be the proportion of the hash values

greater than the current one under consideration. In that case, the expected

number of collisions, x̂p, should satisfy

x̂p = α(1 + px̂p)

On any given probe, there is a 1 − α probability of hitting an empty cell, in

which case there are zero expected collisions. With probability α, we probe

an occupied cell, which guarantees at least one collision. With probability

1−p, this is the last probe and there are no more collisions. With probability

128 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

0.1

1

10

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

co
lli

si
on

s
pe

r
ne

g.
qu

er
y

(x̂
)

(l
og

sc
al

e)

Proportion of cells occupied (α)

Theoretical
Ordered, Experimental
Ordered, To Fit F.P. Rate
Static, Experimental
Static, To Fit F.P. Rate

Figure 7.4: Average collisions per negative query, expected and observed, for
“ordered” and “static” compacted table designs, at various occupancies. Ex-
perimental results came from instrumenting our Java implementation to count
collisions and performing 10 million new queries to a structure with each of
the given occupancies. “To Fit F.P. Rate” values are based on false positive
rate observations (see Figure 7.2) and inverting Equation 7.1. In each case,
c = 2 000 003 cells and b = 12 bits (⇒ s = 4095).

p, we continue to the next probe.

Thus, solving for x̂p,

x̂p =
1

α−1 − p

Letting the uniformly distributed hash values go to infinity, we get the overall

expected collisions by integration:

x̂OHC ≈
∫ 1

0

1

α−1 − p
dp = − ln(1− α) = − ln(1− k/c) (7.6)

This is validated in Figure 7.4, where it is the “Theoretical” line, match-

7.2. ACCURACY ANALYSIS AND VALIDATION 129

ing the observations for both of our ordered compacted tables. It also ex-

plains the false positive rates observed for the static table (“Static, To Fit F.P.

Rate”). Combining with Equation 7.1 gives the “Static Theoretical” line of

Figure 7.2, which is closely matched by the “Static Experimental” observa-

tions.

7.2.5 Asymptotics

To meet our criteria of “asymptotically compact” for inherently inexact struc-

tures, the false positive rates of compacted tables should effectively depend

only on m/v, the memory per element added (see Section 4.4). In the

worst case for a compacted table’s final false positive rate, each unique el-

ement added occupies a new cell and k = n = v. If we show it is asymp-

totically compact for its worst false positive rates, which depend only on

m/v = m/n = m/k, it should be easy to believe the structure is asymptoti-

cally compact in general.

If we pick a constant, non-full occupancy, α = k/c < 1, to use in all cases,

we can derive the appropriate number of cells, c, from k/α. The size of each

stored value is then b = bm/cc. The number of possible values is s = 2b − 1.

It should be sufficient to show that if we double m and v, the false posi-

tive rate is essentially the same. (See “litmus tests” in Section 4.4.) Doubling

these doubles the number of cells, c, but keeps the stored hash values the

same size (b and s do not change). For structures whose false positive rate

depends only on the number of collisions per query, the false positive rate

from Equation 7.1 will stay the same if x̂ also stays the same (as s does).

Equation 7.3 shows that x̂ for the unordered structure depends only on α

(for large n and α < 1). Equation 7.6 shows that x̂ for the static, ordered

structure depends only on α (for large k and α < 1).

The false positive rate for Stern and Dill’s dynamic, ordered structure

should lie between those two, but to have more confidence, we work from

130 CHAPTER 7. COMPACTED TABLES (HASH COMPACTION)

Stern’s approximation (Equation 7.5), rephrased:

f̃OHC(αc, c, s) =
2

s

(
Hc+1 −H(1−α)c

)
− 2c+ αc[(1− α)c]

cs[(1− α)c+ 1]

Using a property of harmonic numbers, that limi→∞ [Hi − ln i] = γ for a

constant γ,

lim
c→∞

f̃OHC(αc, c, s) = lim
c→∞

1

s

(
2 ln

���c+ 1

(1− α)�c
− α�����

(1− α)c2 + ��2c]

�����
(1− α)c2 + �c

)
=

1

s

(
2 ln(1− α)−1 − α

)
From the limit, it is clear that if 0 < α < 1 and c is large enough, the

false positive rate of the standard compacted table depends only on α and s,

modulo Stern’s approximation. α is constant and s has a lower bound based

on m/v. Thus, the structure is asymptotically compact.

7.2.6 Negative result: reordered hashing

Suppose that instead of using the same ordering in each cell for ordered

hashing, each cell uses a different ordering on stored values. (Equivalently,

one could imagine using the same ordering in all cells and instead transform-

ing the hash values between probes, but this would interfere with double

hashing.) By using different orderings, a value could be near one end of the

ordering for the first probe and anywhere else in the ordering for the next

probe. This should remove dependence among the probes for the probabil-

ity of ordered hashing precluding the element as previously added, bringing

more equity to the accuracy afforded to different inputs. I had hypothesized

that correcting that inequity would lower the false positive rate, closer to

that of the static compacted table, but experiments showed no difference

in false positive rate compared to the dynamic structure using traditional

ordered hashing.

7.3. SUMMARY 131

7.3 Summary

The compacted hash table (“hash compaction”) has remarkable speed and

peak competitive accuracy, but existing work had left holes in the analysis,

understanding, and use of the structure. I believe I have filled many of those

holes. I have shown how collisions fully explain the false positive rate for

some variants of the structure but not for others. I described a new, “static”

variant of the structure, which might have the lowest false positive rates of

any known, practical structure supporting random-access reads. And I have

shown that the structure’s impressive accuracy scales perfectly, to arbitrarily

large structures–but only if it is not filled completely. The compacted hash

table is a valuable device in the verifier’s toolbox.

CHAPTER 8

Inexact Storage Using Exact Storage

This chapter describes the basis for using exact data structures to solve the

inexact visited set problem. I present two general approaches that arise nat-

urally, show that one is usually better, and show that for each, the required

beyond the unrestricted optimal is at most a constant number of bits per

added element. The distinction between the two approaches is rarely sig-

nificant, but it does affect the bound in Theorem 11.1 (see Figure 11.5).

Formulas presented here are also useful for computing and displaying the

approximate expected hash omissions in a model checker using an exact

structure for inexact storage.

Bibliographic Notes The general approach of using an exact representa-

tion to implement an inexact structure traces back to a 1978 STOC paper by

Carter et al. [13, Approximate Membership Tester 3], if not earlier. For “an

optimal Bloom filter replacement,” Pagh et al. extend that to describe the

inherent space overhead in using an exact structure to implement an inex-

act structure [65, Section 2], but their analysis is limited to cases in which

u is much too large for exact storage (with a given m and v). The same

limitation applies to later work by Dietzfelbinger and Pagh [20, 19].

Contribution If m/v is close to lg u, the bounds by Pagh et al. are not

accurate, and such cases are important for adaptive storage—if it is to start

with exact storage and remain close to the optimal accuracy for available

133

134 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

memory (Chapter 11). Here I fill in details, so that the analysis fits our

needs in Chapter 11.

8.1 Introduction

Solving the visited set problem inexactly using an exact set is just a matter

of hashing the input elements to elements of some smaller set and exactly

storing a subset of the smaller set. One could think of this as fingerprinting

all the input elements and storing a set of fingerprints.

Recall that the visited set should be a subset of the represented set, itself a

subset of the universe in consideration: V ⊆ W ⊆ U . Let P be a partitioning

of U . That is, for all X ∈ P , X ⊆ U ; for all X ∈ P and Y ∈ P , X 6= Y ⇒

X ∩ Y = ∅; and
⋃
X∈P X = U . Let h(x) = {X : x ∈ X ∧ X ∈ P}; in other

words, h associates elements of the universe with what partition they are

in. Mathematically, this is what the fingerprinting hash function does, since

each fingerprint value is associated with some unique subset of the universe.

There seem to be two general approaches to computing the hashes, and

it is not immediately clear that one is inherently better than the other, or

that they can have significantly different accuracy. I consider both in detail

and show the two approaches are indistinguishable when |U | =∞, which is

why work that assumes a relatively large universe (such as [65]) need not

consider the distinction. When |U | <∞, both methods arise quite naturally

in practice. “Even” partitioning is detectably better (lower false positive

rate for same memory) when the number of partitions is only a small factor

from the universe size, and I show it is at least as good as “balls and bins”

partitioning in almost all practical cases.

8.2. “BALLS AND BINS” PARTITIONING 135

8.2 “Balls and bins” partitioning

The first approach (“balls and bins”), given a desired number of partitions

p, is to place each element of the universe randomly and independently into

one of the p partitions, as an ideal hash/fingerprinting function would. After

adding v elements, the probability that any given partition has had none

of its elements added is the probability that all v were assigned to other

partitions: (1− 1/p)v. One minus that is also the probability that an element

of the universe that has not been added maps to a partition which has had

at least one of its elements added. The probability that an element that has

been added maps to a partition which has had at least one of its elements

added is, of course, 1. Thus, by linearity of expectations, if v elements have

been added and u − v have not, then the expected number of elements of

the universe whose partition must be in the represented subset is

ŵBBv(u, v, p) = v + (u− v)

(
1−

(
1− 1

p

)v)
(8.1)

Recall that if u = |U | < ∞, f = w−v
u−v , so we can get an expected false

positive rate by plugging in a ŵ for w. In this case, that makes things simpler,

even removing dependence on u:

f̂BBv(v, p) = 1−
(

1− 1

p

)v
(8.2)

From standard Bloom filter analysis (Equation 6.5), we know there is a

good approximation that depends only on v/p:

f̂BBv(v, p) ≈ 1− e−v/p (8.3)

The analysis is much simpler if we are given the number of affecting

additions, n, such as when observing a data structure for which the number

of unique additions is unknown. In that case, because of the independence

136 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

of assigning each element to a partition, the false positive rate is exactly the

proportion of represented partitions:

fBBn(n, p) =
n

p
(8.4)

This makes the post facto expected hash omissions from a search easy to

compute (see Equation 3.6):

ôBBn =
n−1∑
i=0

n/p

1− n/p
≤,≈ n

p

n

∫ n/p

0

x

1− x
dx = −n− p ln

(
1− n

p

)
(8.5)

Note that floating-point arithmetic is likely to give inaccurate results for

the last formula, because floating-point is not good at representing numbers

very close to 1. That formula requires high-precision arithmetic. Here are

simpler bounds that are good approximations when n� p:

n(n− 1)

2p
=
n− 1

2
· n/p

1
≤ ôBBn ≤

n− 1

2
· n/p

1− n/p
=
n(n− 1)

2(p− n)
(8.6)

Theorem 8.1. A set over-approximation for v unique elements using an in-

formation-theoretic optimal exact representation based on p “balls and bins”

partitions uses O(v) more bits than an information-theoretic optimal represen-

tation giving the same false positive rate.

Proof Let n̂ be the expected number of unique partitions represented by the

v unique elements. Observe n̂ ≤ v, because n̂ is also the expected number

of affecting additions.

Let f̂ be the false positive rate of the structure based on “balls and bins”

partitioning, based on n̂ and p. Observe that by Equation 4.4, f̂ = n̂
p
.

The proof obligation is that m̆n̂,p,0 = m̆v,u,f̂ +O(v), or

m̆n̂,p,0/v − m̆v,u,f̂/v = O(1).

To prove this, I will replace m̆n̂,p,0/v with things greater than or equal and re-

8.2. “BALLS AND BINS” PARTITIONING 137

place m̆v,u,f̂/v with things less than or equal, until I can show the difference

is O(1).

Starting with the left operand, we use Equation 4.3 and n̂ ≤ v to bound

from above (lg e is the base-2 logarithm of 2.71828 . . .):

m̆n̂,p,0/v ≤
n̂

v
(lg p− lg n̂+ lg e)

=
n̂

v
lg
p

n̂
+
n̂

v
lg e

≤ lg
p

n̂
+ 1.5

For the right operand, we use f̂ = n̂
p
, and ŵ = (u−v)f̂ +v to bound from

below:

m̆v,u,f̂/v ≥ lg u− lg ŵ − lg e

≥ − lg
ŵ

u
− 1.5

= − lg
(u− v)(n̂/p) + v

u
− 1.5

≥ − lg

(
n̂

p
+
v

u

)
− 1.5

Thus, we have reduced the proof to

lg
p

n̂
+ 1.5 + lg

(
n̂

p
+
v

u

)
+ 1.5 = O(1).

Or, using the fact that m̆n̂,p,0 ≥ m̆v,u,f̂ by definition, it suffices to prove

lg
p

n̂
+ lg

(
n̂

p
+
v

u

)
= ±O(1).

From here, we case split on whether n̂
p
≥ 1

2
.

We first consider the case of n̂
p
≥ 1

2
. Recall that n̂ ≤ p. Thus, 1 ≤ p

n̂
≤ 2.

Using that and the by-definition bounds 0 ≤ n̂
v
≤ 1 and 0 ≤ v

u
≤ 1, it is

easy to see that all the terms are bounded by constants and, thus, equal to

±O(1). Conceptually, this makes sense because n
p
≥ 1

2
implies v

p
≥ 1

2
, which

138 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

implies that using a p-bit bit table as the exact representation requires only

a constant number of bits per added element.

We now have to consider the case of n̂
p
< 1

2
. For this case, we back up to

expand one of our bounds, using p ≤ u:

m̆v,u,f̂/v ≥ − lg

(
n̂

p
+
v

u

)
− 1.5

≥ − lg

(
n̂

p
+
v

p

)
− 1.5

Combining the bounds as before, we get

lg
p

n̂
+ lg

(
n̂

p
+
v

p

)
= ±O(1).

⇔

lg
(

1 +
v

n̂

)
= ±O(1).

Thus, to finish the proof, we need to show that the number of added ele-

ments is not a significant factor larger than the expected number of affecting

additions when n̂
p
< 1

2
. This seems quite reasonable, because when n � p,

virtually every unique addition is going to map to a new/unvisited partition

of U , so in that case, v
n̂
≈ 1. By the time we reach n

p
= 1

2
, the next unique

addition has a 50% probability of mapping to a new/unvisited partition.

Working it out shows that v
p
≈ ln 2 is where we expect n̂

p
= 1

2
. Thus, v

n̂
is

less than about 1.39 whenever n̂
p
< 1

2
. �

8.3 “Even” partitioning

The other approach (“even”) is to partition U as evenly as possible among

the p partitions. This arises if the elements from our universe are already

“randomized” or uniformly distributed and we do not want to incur the cost

of more hashing to partition the elements. As a small example, if it takes

8.3. “EVEN” PARTITIONING 139

16 bits to describe each element (u = 216) and we divide the space into

p = 212 = 4096 partitions, we can use 12 bits of the (randomized) descriptor

to choose the partition. Thus, exactly u/p = 216−12 = 24 = 16 elements are

assigned to each partition. In “balls and bins” partitioning, 16 would only

be the average.

In general, each partition will have either bu/pc or du/pe elements, but

to simplify the analysis, we will assume u/p is an integer. Once again, after

adding v elements, the probability that any given partition has had none

of its elements added is the probability that all v were assigned to other

partitions. In this case, that probability is captured precisely by the ratio of

the number of ways of choosing v elements from the universe without that

one partition,
(
u−u/p
v

)
, to the number of ways of choosing v elements from

the whole universe,
(
u
v

)
. By linearity of expectations, the expected number

of elements of the universe whose partition must be in the subset is

ŵEv(u, v, p) = u

(
1−

(
u−u/p
v

)(
u
v

))
(8.7)

First observe that

ŵEv(u, v, p) = u

(
1−

v−1∏
i=0

u− u/p− i
u− i

)
= u

(
1−

v−1∏
i=0

(
1− 1

p(1− i/u)

))

Thus,

ŵEv(u, v, p) ≥,≈ u

(
1−

(
1− 1

p

)v)
≥,≈ u

(
1− e−v/p

)
(8.8)

Also observe that

ŵEv(u, v, p) = u

1−
u/p−1∏
i=0

u− v − i
u− i

 = u

1−
u/p−1∏
i=0

(
1− v

u− i

)

140 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

Thus,

ŵEv(u, v, p) ≤,≈ u

(
1−

(
1− v

u− u/p

)u/p)
≤,≈ uv

p− 1
(8.9)

The approximations are best when u� p� v.

If observing a data structure for which the number of unique additions

is unknown, we can count the number of affecting additions, n and use that

to determine the exact represented set size, which is n times the number of

unique elements that map to each partition, u
p
:

wEn = n
u

p
(8.10)

Thus,

fE =
wE − v
u− v

=
n/p− v/u
1− v/u

(8.11)

Computing the exact false positive rate, therefore, requires knowledge

of both v and n. Contrast with the the “balls and bins” scheme, in which

we know fBB precisely given only n but need v as well to determine wBB

precisely.

Theorem 8.2. A set over-approximation for v unique elements using an infor-

mation-theoretic optimal exact representation based on p “even” partitions uses

O(v) more bits than an information-theoretic optimal representation giving the

same false positive rate.

Proof This proof is set up analogously to the proof of Theorem 8.1. The

proof obligation is

m̆n̂,p,0/v − m̆v,u,f̂/v = O(1),

and we can assume from the previous proof that

m̆n̂,p,0/v ≤ lg
p

n̂
+ 1.5 and m̆v,u,f̂/v ≥ − lg

ŵ

u
− 1.5.

8.4. COMPARISON 141

Given n̂, ŵ is very simple for “even” partitioning: ŵ = n̂u/p. Replacing that

gives a nicely simple bound:

m̆v,u,f̂/v ≥ − lg
n̂

p
− 1.5.

Using these bounds, we can reduce the overall proof obligation to a triviality:

lg
p

n̂
+ 1.5 + lg

n̂

p
+ 1.5 = O(1)

⇔

3 = O(1)

�

8.4 Comparison

Now the question is, “Which approach is better?” First, let us observe that

in the limit (u→∞) the two approaches are indistinguishable:

lim
u→∞

f̂E = lim
u→∞

ŵE(u, v, p)

u
= 1− lim

u→∞

v−1∏
i=0

(
1− 1

p(1− i/u)

)
= 1−

(
1− 1

p

)v
= f̂BB

When u is finite, it might appear the “even” approach always has a lower

false positive rate, because it is lower for a given number of affecting addi-

tions (n). The problem is that the number of affecting additions is expected

to be higher (closer to the number of unique additions), precisely because

of this lower false positive rate when we start adding to an “even” structure.

It is possible the false positive rate for “even” does get worse than “balls &

bins” after enough additions.

We now analyze the conditions under which the “even” approach would

142 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

have a lower false positive rate:

“even” is better

⇔

f̂E < f̂BB

⇔ (
u− u

(
u−u/p
v

)(
u
v

) − v

)
(u− v)−1 < 1−

(
1− 1

p

)v
⇔

u− v
u− v

− u

u− v

v−1∏
i=0

u− u/p− i
u− i

< 1−
(
p− 1

p

)v
⇔

u

u− v

v−1∏
i=0

u− u/p− i
u− i

>
v−1∏
i=0

p− 1

p

⇔
u

u− v
>

v−1∏
i=0

pu− u− pi+ i

pu− u− pi

⇔
v−1∏
i=0

u− i
u− i− 1

>
v−1∏
i=0

pu− u− pi+ i

pu− u− pi

⇔

1 >
v−1∏
i=0

[(u− i)− 1][(pu− u− pi) + i]

(u− i)(pu− u− pi)

⇔

1 >
v−1∏
i=0

(
1 +

ui− i2 − pu+ u+ pi− i
(u− i)(pu− u− pi)

)
⇔

1 >
v−1∏
i=0

(
1 +

(u− i)(i− p+ 1)

(u− i)(pu− u− pi)

)
⇐

v−1∧
i=0

[
i− p+ 1

pu− u− pi
< 0

]

8.4. COMPARISON 143

⇔
v−1∧
i=0

[
i− p+ 1

u− u/p− i
< 0

]
⇐

v − p < 0
∧

u− u/p− v + 1 > 0

⇔

v < p
∧

u/p < u− v + 1

⇐ {using v < p}

v < p
∧

u/p < u− p+ 1

⇐

v < p
∧

p < u
∧

p > 1

“Even” is expected to have a better false positive rate in at least those

cases, including virtually all reasonable cases, and likely many more. If

v ≥ p, then the false positive rate is quite high, at least (0.63u − v)/(u − v).

And there is no point in partitioning if p ≥ u (exact storage is possible) or

p ≤ 1 (false positive rate 100% after first addition).

“Even” is only noticeably better, however, if u/p is not big, meaning the

size of stored hash values is close to the size of the original elements from

U . Consider u = 216, p = 212, v = 210. “Balls and bins” gives a false positive

rate of 0.2212, while “even” is between 0.2088 and 0.2105. If p is even closer

to u, say p = 214, then the difference is even bigger: 0.061 vs. 0.046.

The advantage for “even” partitioning comes from the fact that unrep-

resented partitions are associated with more unadded elements than repre-

sented partitions, which have had at least one of their elements added. As

u/p get larger, the proportion of unadded elements in the universe that are

in represented partitions gets closer to the proportion of partitions that are

represented and the advantage becomes negligible. In “balls and bins” par-

titioning, the two are always the same (in expectation, assuming random

hashing).

144 CHAPTER 8. INEXACT STORAGE USING EXACT STORAGE

These results also help to inform implementation of the inexact-exact

reduction. Most importantly, if the descriptors are already uniformly dis-

tributed, the “even” approach offers top quality with no [additional] hash-

ing; partitions can be chosen based on a prefix of the descriptor. But the

practical difference in accuracy between the two approaches is rarely signif-

icant.

8.5 Summary

The point of this chapter is to verify that using an exact representation to

implement an inexact representation is reasonable. By my criteria, it is rea-

sonable, because if an exact representation falls within my characterization

of “asymptotically compact,” using a given reduction to implement an inex-

act structure results in an “asymptotically compact” solution to that problem.

The two natural approaches to this reduction are usually indistinguishable,

but the accuracy of “even” partitioning is noticeably better in rare cases—a

fact utilized in demonstrating the bounds of Theorem 11.1.

CHAPTER 9

Cleary tables

John G. Cleary’s “compact hash table” [14] is a clever twist on a classical

design for hash tables, but Cleary tables are remarkably space efficient [65,

Section 5]. Cleary tables represent subsets of finite U exactly, but as shown

in Chapter 8, we can use such structures for inexact representation. This

chapter describes the operation and use of Cleary tables without dynamic

adaptation, described in Chapter 10.

The Cleary table is a remarkable structure. If speed is no concern, it can

be made to use near minimal space. To maintain good speed, however, it

should not exceed about 90% occupancy. Beyond that point, lookups quickly

degrade to linear search due to clustering. Unfortunately, linear probing for

collision resolution is critical to the design of the structure. On the other

hand, the maximum allowed occupancy serves as a space vs. time “control

knob”.

Contributions I optimize the metadata of the structure to save one bit per

cell. I also describe and analyze several variants of the structure, to aid in

understanding and to increase the structure’s configurability.

145

146 CHAPTER 9. CLEARY TABLES

9.1 Description

Like the compacted chaining table, we ensure the elements are uniformly

distributed, using a randomization function if needed, and then use part

of the resulting descriptor as a location, a “home address,” and store only

the remaining data, an “entry,” in a “cell” along with some metadata. The

Cleary table consists of a single array of cells, and entries from the same

home address are placed in succession in the array, in “runs” 1. Metadata

bits in the cells indicate where runs begin and end and match them up to

home addresses. No matter the distribution of input elements, the Cleary

table can represent them using just the entries plus two bits of metadata

each. Efficient operation, however, depends on reasonably short runs and at

least a small proportion cells throughout remaining empty. Figure 9.1 shows

the logical structure of part of a Cleary table.

9.1.1 Representation

Now I describe three conceptual metadata bits per entry; later I show that

one is redundant, something Cleary did not observe in his paper. (I have

also changed some names from Cleary’s paper.) There is a MAPPED bit for

each home address. For now, we assume one home address for each cell, so

we put a MAPPED bit in each cell. This bit is set iff there has been at least

one element added with that home address. If the bit is set, that also means

there is a run of entries somewhere for that home address. Each cell also has

an OCCUPIED and a CHANGE bit, which relate to the entry stored in the cell.

The OCCUPIED bit is set iff the cell stores an entry, which could be all zeros.

The CHANGE bit, only relevant if the cell is occupied, is set iff the entry is the

first in a run.

The nth CHANGE bit that is set to “1” begins the run of entries whose

home address is where the nth MAPPED bit that is set to “1” is located. To

1In previous publications I have referred to runs as “chains.”

9.1. DESCRIPTION 147

0
1
1
0
0
1
0
0

1
0
0
0
1
0
1
1

1
1
0
1
0
0
0
1

0
1
1
0
0
1
1
0

1
1
0
1
0
1
1
1

1
1
1
0
1
0
0
1

1
0
1
1
1
1
1
0

0
0
1
0
0
1
1
1

Data entries

Runs

0
0
1
0
1
0
1
0

0
0
1
0
1
0
1
1

0
0
1
0
1
1
0
0

0
0
1
0
1
1
0
1

0
0
1
0
1
1
1
0

0
0
1
0
1
1
1
1

0
0
1
1
0
0
0
0

0
0
1
1
0
0
0
1

0
0
1
1
0
0
1
0

0
0
1
1
0
0
1
1

0
0
1
1
0
1
0
0

0
0
1
1
0
1
0
1

0
0
1
1
0
1
1
0

0
0
1
1
0
1
1
1

Home address

......Addresses

associations

(implicit)

0010101110111110
0010110101100100
0010110110001011
0011001011010001
0011001101100110
0011001111010111
0011001111101001
0011011100100111

Values represented

Figure 9.1: Logical diagram of part of a Cleary table. In this example, the
“elements” or “values” are sixteen bits long. The first eight bits of each are
the home address, and the remaining eight are stored in the cell entry. The
metadata bits are not shown. The logical structure given by the metadata is
shown: grouping of occupied entries into runs, each associated with a home
address.

ensure that every OCCUPIED entry belongs to a run with a home address, a

Cleary table maintains the following invariant:

Invariant 9.1. In a Cleary table, (a) a cell with its CHANGE bit set must also be

OCCUPIED 2, (b) the first OCCUPIED cell (if there is one) has its CHANGE bit set,

and (c) the number of MAPPED bits set is the same as the number of CHANGE

bits set.

The runs do not have to be near their homes for the representation to

2This part of the invariant is automatic when the OCCUPIED bits are optimized away.

148 CHAPTER 9. CLEARY TABLES

work, but the order of the runs corresponds to the order of the set mapped

bits.

Unlike the OCCUPIED and CHANGE bits, the MAPPED bit is not necessarily

associated with the entry in the cell at that location. In fact, if we scrap

having one MAPPED bit per cell, it is not necessary for the number of home

addresses to be the same as the number of cells, but it seems to make sense

for them to be similar in size. (When the structure is full, we expect, asymp-

totically, 1 − e−1 ≈ 0.632 proportion of the MAPPED and CHANGE bits to be

set.) See Section 9.5.3.

9.1.2 Random access

For the structure to be fast, each home address must have a preferred loca-

tion, a single cell, for its possible run of entries. Assuming a home address

for each cell, the mapping is trivial; see Section 9.5.3 for discussion of other

mappings.

Clearly, runs of two or more entries cannot occupy just their own pre-

ferred location. More generally, there are cases in which it is impossible for

all runs to include their preferred location. As an example, consider three

successive home addresses with three successive preferred locations and el-

ements have been added with each of the three home addresses, with at

least two added to the middle one. If the run for the middle one includes its

preferred location, it will necessarily occupy the preferred location of one of

the other mapped home addresses.

Nevertheless, this next invariant makes fast access the likely case when

a portion of cells are left unoccupied:

Invariant 9.2. In a Cleary table, all cells from where an element is stored

through its preferred location (based on its home address) must be occupied.

This basically says that runs of elements must not be interrupted by

empty cells, and that there must not be any empty cells between a run and

9.1. DESCRIPTION 149

its preferred location.

Consequently, when we go to add an element, if its preferred location is

free/unoccupied, we store it in that cell, set its CHANGE bit, and, of course,

set the MAPPED bit for its home address. We know by Invariant 9.2 that if

the preferred location of an element is unoccupied, then no elements with

that home address have been added. Consequently, the MAPPED bit is not set

and there is no run associated with that home address. Note also that this

most basic case of adding preserves both invariants given.

If we’re trying to ADD an element whose preferred location is already

occupied or QUERY an element whose home address MAPPED bit is set, we

must find the run for that home address—or where it must go—in order to

complete the operation. Recall that the element stored in the corresponding

preferred location may or may not be in the run for the corresponding home

address.

To match up runs with home addresses—to match up CHANGE bits with

MAPPED bits—we need a “synchronization point”. Without Invariant 9.2

the only synchronization points were the beginning and end of the array

of cells. With Invariant 9.2, however, unoccupied cells are synchronization

points. Thus, to find the nearest synchronization point, we perform a bidi-

rectional search for an unoccupied cell from the preferred location. This

is called findEmpty in the algorithm in Section 9.2. (Variants described in

Section 9.5.4 do not treat the beginning and end as synchronization points.)

From an unoccupied, unmapped cell, we can backtrack, matching up

MAPPED bits with CHANGE bits, until we reach the run corresponding to the

home address we are interested in–or the point where the new run must

be inserted to maintain the proper matching (searchLeft and searchLeft

in the algorithm). If we are querying, we can just iterate through the run

to complete the query. If we are adding and the element is found to be

new, there must be space to add it. Luckily, we already found the empty

cell nearest the preferred location of the run we’re adding to (unless we

150 CHAPTER 9. CLEARY TABLES

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

0 1 2 3 4 5 6 7Index (dec)

1010

Add "0100100"

0100

1010

Add "0100010"

Add "1001010"

1010

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

0010

0010

Add "0111100"

1100010000100000 1010

Add "0100000"

1010010000100000

Figure 9.2: Adding five elements to a Cleary table with eight cells. In this ex-
ample, the elements are seven bits long, the home addresses are three bits long,
and the cell data entries are, therefore, four bits long. Each cell is shown with
three metadata bits (MAPPED, CHANGE, and OCCUPIED). The lines connecting
various metadata bits depict how the metadata bits put the entries into runs
associated with home addresses.

9.1. DESCRIPTION 151

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

0 1 2 3 4 5 6 7Index (dec)

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

Change
Occupied

Mapped
000 011 100 101 110 111001 010Index (bin)

Data entry

0110

1010 1110 01101100

011011001010 1011 0011 1110

011011001010 1011 0011 1110

Add "1000101"

1010 1011 0011 01011101 1110 1100

Add "1001110"
Add "0001010"

Add "1110110"
Add "1011100"

Add "0001011"
Add "1000011"

Add "0111101"

1101

Figure 9.3: A complex example, filling a Cleary table with eight cells. The
table uses the same configuration as in Figure 9.2. I will re-emphasize that
the lines connecting metadata bits depict for the reader how those bits are
interpreted; the connecting lines do not add any information.

152 CHAPTER 9. CLEARY TABLES

used the beginning or end as a synchronization point). We simply shift all

entries (and their OCCUPIED and CHANGE bits) toward and into the empty

cell, opening up a space in the correct run—or where the new run must be

added (shiftForLeft and shiftForRight in the algorithm). The rest is a

matter of keeping the invariants on CHANGE and MAPPED bits straight. For

details, see the algorithm in Section 9.2.

Figure 9.2 shows what happens to the data in a Cleary table as elements

are added. The first two additions are simple, but each of the next three has

unique, potentially tricky aspects to it. Figure 9.3 has additional examples.

9.1.3 An optimization

We add one more invariant, originally intended to speed up lookups, but I

show how it can be used to eliminate the OCCUPIED bits:

Invariant 9.3. In a Cleary table, all entries in a run are put in low-to-high

unsigned numerical order.

This makes adding slightly more complicated, and probably does not

affect much the time per ADD (likely less searching, likely more shifting).

Negative QUERYs can be a little faster, because an element’s presence can be

ruled out without scanning the whole run. Note that this optimization of

negative QUERYs is insignificant in the visited set paradigm, in which nega-

tive QUERYs become ADDs.

With Invariant 9.3, the OCCUPIED bits are redundant,3 because if we fill

all unoccupied entries with all zeros and make sure their CHANGE bit is unset,

then entries with all zeros are occupied iff their CHANGE bit is set. This is

because entries with all zeros will always be first in their run, so they will

always have their CHANGE bit set.

3In [65, Section 5], a Cleary table was claimed to have two bits of metadata per cell,
but this was later admitted to be an oversight rather than an unsubstantiated new claim. In
context, the oversight was minor.

9.2. ADD ALGORITHM 153

This optimization precludes the encoding of multisets by repeating en-

tries, because only one zero entry per run is possible under the optimized

encoding.

9.2 ADD algorithm

Here I present a basic Cleary table implementation suitable for use as a vis-

ited set; it has only an ADD operation that returns a flag indicating whether

the structure needed modification to include the given value.

Because it is reasonably complex and I want to be sure it is correct,

I present it in a tested, executable form. It is written in Java, third edi-

tion [35], and tested using the Sun Microsystems/Oracle “Java SE 6.0.”

The Cleary table is encapsulated in the class ClearyTable. The beginning

of the class definition includes fields for configuration information and the

underlying memory table, a constructor, and methods to abstract away the

memory. The method definitions that follow, ending with add, use those

methods to manipulate the structure only in terms of the metadata bits and

cell entries. The BitVector class used by the ClearyTable should be under-

stood in context. An implementation is available from the author.

This implementation should have the same computational complexity as

the best known algorithm, but I focused on making this implementation easy

to read. As such, this implementation makes some simplifying assumptions,

such as that inputs are already uniformly distributed (hashed if needed),

that represented values are no larger than 64 bits, and that the structure is

less than about 256MB in size. My scalable, highly-tuned implementation is

in 3SPIN, which is written in C.

154 CHAPTER 9. CLEARY TABLES

public class ClearyTable {
protected int addr bits; // # of bits in an address
protected int entry bits; // # of bits in an entry
protected int num cells; // # of cells
protected int cell bits; // # of bits in a cell
protected BitVect table; // the bit vector for the cells

/** Constructor, called in creating new ClearyTables. */
public ClearyTable(int addr bits0, int entry bits0) {

addr bits = addr bits0;

entry bits = entry bits0;

num cells = 1 << addr bits; // 2 to the addr bits
cell bits = entry bits + 2; // two metadata bits
// total bits needed = num cells * cell bits
table = new BitVect(num cells * cell bits);

}

// Where things are in the bit layout of each cell
static final int MAPPED OFFSET = 0;

static final int CHANGE OFFSET = 1;

static final int ENTRY OFFSET = 2;

protected boolean getMapped(int addr) {
return table.getBit(addr * cell bits + MAPPED OFFSET);

}
protected void setMapped(int addr, boolean v) {

table.putBit(addr * cell bits + MAPPED OFFSET, v);

}
protected boolean getChange(int loc) {

return table.getBit(loc * cell bits + CHANGE OFFSET);

}
protected void setChange(int loc, boolean v) {

table.putBit(loc * cell bits + CHANGE OFFSET, v);

}
protected long getEntry(int loc) {

int bitPos = loc * cell bits + ENTRY OFFSET;

return table.getUpto64(bitPos, entry bits);

}
protected void setEntry(int loc, long v) {

int bitPos = loc * cell bits + ENTRY OFFSET;

table.putUpto64(bitPos, v, entry bits);

}

protected boolean isOccupied(int loc) {
return getEntry(loc) != 0 || getChange(loc) != false;

}

9.2. ADD ALGORITHM 155

protected int findEmpty(int startLoc) {
int fwd = startLoc;

int rev = startLoc - 1;

for (;;) { // loop until return
if (fwd < num cells) {

if (!isOccupied(fwd)) return fwd;

fwd = fwd + 1;

}
if (rev >= 0) {

if (!isOccupied(rev)) return rev;

rev = rev - 1;

}
}

}

static enum SearchFlag {
/** Value already in the table. */
FOUND,

/** Need to insert a run here for home address. */
NEW RUN,

/** Insert here as beginning of run to the right. */
BEGIN RUN,

/** Insert here into same run as is on the left. */
CONTINUE RUN

}

static class SearchResult {
/** Whether value was found, and if not, how to add it. */
SearchFlag flag;

/** Where the value was found, or where to add it. */
int loc;

SearchResult(SearchFlag flag0, int loc0) {
flag = flag0;

loc = loc0;

}
}

protected void copyEntryAndChange(int src, int dst) {
setChange(dst, getChange(src));

setEntry(dst, getEntry(src));

}

156 CHAPTER 9. CLEARY TABLES

/**
* Search for given entry with given home address to the left
* of given empty location.
* Precondition: targetHome < emptyCell
* && !isOccupied(emptyCell)
*/
protected SearchResult searchLeft(long targetEntry,

int targetHome, int emptyCell) {
int curHome = emptyCell;

int curLoc = emptyCell;

for (;;) { // loop until break
do {

curHome = curHome - 1;

} while (curHome > targetHome && !getMapped(curHome));

if (curHome == targetHome) break;
do {

curLoc = curLoc - 1;

} while (!getChange(curLoc));

}
if (!getMapped(curHome)) {

// run should be inserted here
return new SearchResult(NEW RUN, curLoc);

}
// otherwise, curLoc is after existing run for home
for (;;) { // loop until return

curLoc = curLoc - 1;

long curEntry = getEntry(curLoc);

if (targetEntry > curEntry) {
// belongs after the current position
return new SearchResult(CONTINUE RUN, curLoc + 1);

}
if (targetEntry == curEntry) {

// found!
return new SearchResult(FOUND, curLoc);

}
if (getChange(curLoc)) {

// belongs at current position, after shifting,
// as beginning of same run
return new SearchResult(BEGIN RUN, curLoc);

}
}

}

9.2. ADD ALGORITHM 157

/**
* Search for given entry with given home address to the right
* of given empty location.
* Precondition: emptyCell < targetHome
* && !isOccupied(emptyCell)
*/
protected SearchResult searchRight(long targetEntry,

int targetHome, int emptyCell) {
int curHome = emptyCell;
int curLoc = emptyCell;
do {

do {
curHome = curHome + 1;

} while (curHome < targetHome && !getMapped(curHome));
do {

curLoc = curLoc + 1;
} while (curLoc < num cells && isOccupied(curLoc) &&

!getChange(curLoc));
} while (curHome < targetHome);
// now curHome == targetHome
if (!getMapped(curHome)) {

// run should be inserted before curCell
return new SearchResult(NEW RUN, curLoc - 1);

}
// otherwise, curLoc is beginning of existing run for home
long curEntry = getEntry(curLoc);
if (targetEntry < curEntry) {

// belongs before current position, beginning of the run
return new SearchResult(BEGIN RUN, curLoc-1);

}
for (;;) { // loop until return

if (targetEntry == curEntry) {
// found!
return new SearchResult(FOUND, curLoc);

}
curLoc = curLoc + 1;
if (curLoc >= num cells || !isOccupied(curLoc) ||

getChange(curLoc)) {
// belongs before current, as end of preceding run
return new SearchResult(CONTINUE RUN, curLoc-1);

}
curEntry = getEntry(curLoc);
if (targetEntry < curEntry) {

// belongs before current position
return new SearchResult(CONTINUE RUN, curLoc-1);

}
}

}

158 CHAPTER 9. CLEARY TABLES

protected void clearEntryAndChange(int loc) {
setChange(loc, false);

setEntry(loc, 0);

}

protected void shiftForLeft(int empty, int loc) {
while (empty > loc) {

copyEntryAndChange(empty - 1, empty);

empty = empty - 1;

}
// for clarity, clear shifted ”empty” cell here
clearEntryAndChange(empty);

}

protected void shiftForRight(int empty, int loc) {
while (empty < loc) {

copyEntryAndChange(empty + 1, empty);

empty = empty + 1;

}
// for clarity, clear shifted ”empty” cell here
clearEntryAndChange(empty);

}

9.3 Analysis

In a Cleary table with c cells and c home addresses, each data entry is lg u−

lg c bits before any rounding off, and with two bits of metadata per entry,

the whole structure uses just c(lg u− lg c+ 2) bits.

To add v elements, we must have enough cells: c ≥ v. If we use the

minimum sufficient for the Cleary table to represent any such set, c = v, the

space usage is (in bits)

v(lg u− lg v + 2) ≤ m̆v,u,0 + 2v

(see Equations 4.3 and 4.6). Note that Theorems 8.1 and 8.2 generalize the

Cleary table’s asymptotic near-optimality to the inexact set representation

problem, using either reduction in Chapter 8.

The 2v “extra” bits in the representation, used for metadata, are modest,

9.3. ANALYSIS 159

/**
* Add the given value if not already added.
* Returns true iff the structure was modified.
*/
protected boolean add(long value) {

// split up value into an entry and a home address
int home = (int)(value >> entry bits);

long entry = value & ((1L << entry bits) - 1);

// find nearest empty cell
int empty = findEmpty(home);

// search for where entry should go, using empty
// cell as synchronization point
SearchResult r;
if (home == empty) {

r = new SearchResult(NEW RUN, home);

} else if (home < empty) {
r = searchLeft(entry, home, empty);

if (r.flag == FOUND) return false; // no modification
shiftForLeft(empty, r.loc);

} else { // (home > empty)
r = searchRight(entry, home, empty);

if (r.flag == FOUND) return false; // no modification
shiftForRight(empty, r.loc);

}

// was not found, and empty cell was shifted to r.loc
setEntry(r.loc, entry);

assert getChange(r.loc) == false;

if (r.flag == NEW RUN) {
assert getMapped(home) == false;

setMapped(home, true);

setChange(r.loc, true);

} else if (r.flag == BEGIN RUN) {
assert getChange(r.loc + 1) == true;

setChange(r.loc + 1, false);

setChange(r.loc, true);

} // nothing for r.flag == CONTINUE RUN
return true; // added

}

} // end of class definition, for Section 9.2

160 CHAPTER 9. CLEARY TABLES

except when v is close to u. That overhead renders the bit table (see Sec-

tion 5.2) superior to the Cleary table when v is close to u. If c = u/4, then

each cell has two bits of entry data and two bits of metadata, for a total of

four bits. But 4c = u is exactly how many bits would be used by a bit table,

and the bit table has O(1) access time and cannot overflow. Thus a bit table

should be used instead of a Cleary table when c ≥ u/4. With 90% maximum

occupancy, that is v ≥ 0.225u.

Allowing the structure to fill up, however, does not allow for random

access. To add v and preserve random access, some proportion of the cells

need to be left unoccupied. Pagh et al. have analyzed this in detail [66], but

our rule of thumb is that the structure becomes unacceptably slow beyond

90% occupancy (see Figure 9.4). Note that their analysis shows that a hash

function with sufficient independence among sets of inputs is required for

average access times to scale perfectly [66].

Thus, if α = v
c

is the proportion of cells occupied, the memory usage in

terms of v and α is (in bits)

α−1v(lg u− lg v + 2− lgα−1)

which is a small constant factor (less than α−1) from the near-optimal

memory usage of the full Cleary table.

9.4 Validation

9.4.1 Speed

Because the primary motivator for my study of Cleary tables is explicit-state

model checking, I examine how its speed for various final occupancies com-

pares to standard Bloom filter configurations. Note that because the struc-

ture is used as a visited set, the effect the final occupancy has on the struc-

ture’s overall “speed” is smaller than for most applications, because it is

9.4. VALIDATION 161

accessed just as heavily for occupancies up to the final one.

Figure 9.4 shows an example in which 90% occupancy is about 10%

slower than 50% occupancy. Specifically, the verification time for a protocol

with little overhead increases by about 10% if we increase final occupancy

from 50% to 90%. I manipulate final occupancy by controlling the number

of cells in the Cleary table. (See Section 9.5.2 for how I implemented non-

power-of-two numbers of cells.)

The Cleary table is the same speed as the k = 3 Bloom filter at about

85% occupancy. At about 50% occupancy, the Cleary table matches the k = 2

Bloom filter’s speed. This should be less problem-specific than configuration-

, system-, implementation-, and compiler-specific. Also, these comparisons

are essentially for “cumulative speed” because explicit-state model checking

follows the visited set usage paradigm.

9.4.2 Compactness

For exact storage With the help of my OCCUPIED bit optimization, the

Cleary table is a remarkably compact, exact representation of a set. To

demonstrate its relative compactness, consider using it to represent the state

space of a 2x2x2 Rubik’s Cube. I use Antti Valmari’s analysis of the problem

and compare to his solutions [82].

The problem has 3 674 160 states of 31 bits each. Valmari also wishes

to associate with each state the rotation at which it was first found, which

is one of six values. This means we need to associate lg 6 ≈ 2.58 bits of

“satellite info” with each entry, or 3 bits if it is not packed.

A simple open-addressed table (Section 5.1) would need 31 + 3 bits per

state, unless we pack the rotations. Valmari points out that standard C++

data structures require many times this because of structural overhead and

internal fragmentation, and because less than 1% of representable states

are reachable, a bit table (Section 5.2) requires hundreds of bits per state.

162 CHAPTER 9. CLEARY TABLES

0

20

40

60

80

100

120

140

160

180

200

0.5 0.6 0.7 0.8 0.9 1

To
ta

lv
er

ifi
ca

ti
on

ti
m

e
(s

ec
on

ds
)

Final proportion of cells occupied (α)

Standard Cleary table
k = 2 Bloom filter
k = 3 Bloom filter

Edge padding Cleary table
Unidirectional Cleary table

Figure 9.4: Verification times using standard Bloom filters and Cleary tables
of various final occupancies. Lower is better. This graph primarily shows how
increases in Cleary table access times due to higher final occupancies increase
overall verification time in an explicit-state model checker. In each case, I use
3SPIN (based on SPIN 5.1.7) on an instance of the PFTP protocol with a 152-
byte state vector and 104 million states. The Cleary table configurations used
64-bit cells, and I manipulated the final occupancy by manipulating the total
memory for the table, from 837 MB (95%) to 1530 MB (52%). The difference
in times for each Bloom filter configuration is due to using the different memory
sizes used by the Cleary tables. To keep other overhead in the model checker
near minimal, I disabled partial order reductions; thus, because SPIN is well
optimized and the protocol is reasonably simple, these results represent about
the largest difference in speed one would observe in practice. The non-standard
Cleary tables are described in Section 9.5. Tests were compiled with gcc 4.4.3
(-O3) and run on a 64-bit Linux system with Intel Xeon X5677 CPUs.

9.4. VALIDATION 163

The “fast” variant of Valmari’s compacted chaining structure (Section 5.3)

requires 24.17 bits per state. The “slow” variant requires 19.37 bits per state.

For a Cleary table, we need at least lg 3 674 160 = 21.81 address bits.

Conveniently, if we round up to 22 address bits (222 cells), we get α = 0.876,

which is acceptably fast. In this case, the Cleary table, with 3-bit rotation

info, needs 31− 22 + 2 + 3 = 14 bits per cell, or 14α−1 = 15.98 bits per state.

That’s closer to the information-theoretic lower bound Valmari derives, 13.22

bits/state, than to his most optimized compacted chaining solution.

If we store the rotations in a separate table and pack groups of six of

them in 16 bits, we have 31− 22 + 2 + 2.67 = 13.67 bits per cell, or 15.61 bits

per state. (This is a fair comparison, because Valmari’s tables the rotations

in with metadata in the structure.)

The Cleary table is not always the most compact among the structures

I have presented. The open-addressed table (Section 5.1) is more compact

for very sparse sets, and the bit table (Section 5.2 is more compact for dense

sets.

For inexact storage Using either reduction from Chapter 8 (the difference

is usually negligible), we can use the Cleary table to over-approximate a set.

Its compactness is usually a little worse than that of the compacted hash

table (Chapter 7); the degree of the difference depends on the maximum

occupancy used in the Cleary table, which also factors heavily into the speed.

Figure 9.5 shows such a comparison between the Cleary table and the

other inherently inexact structures presented. Keep in mind that this figure

does not incorporate what I consider to be the true strength of the Cleary

table as an inexact representation: the ability to adapt it dynamically. See

Chapter 10.

164 CHAPTER 9. CLEARY TABLES

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1015202530

Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

16-bit Cleary table, 80% Max Occ
18-bit Cleary table, 90% Max Occ

k=15 Bloom filter
20-bit Compacted table

Theoretical lower bound

Figure 9.5: Comparison of inaccuracy of comparable Bloom filter, compacted
table, and Cleary table configurations. Lower is better. This essentially shows
the expected hash omissions for various numbers of states seen, using vari-
ous data structure configurations, but the axes are chosen to be independent
of the actual magnitude of memory or states. They instead show the propor-
tion of states expected to be hash omissions vs. the ratio of memory to states
seen, “Theoretical lower bound” assumes states are taken from a universe large
enough not to permit exact storage near the domain of this graph. All the con-
figurations are chosen to optimize the m/v ≈ 20 case. “16-bit Cleary table”
refers to 16 bits per cell. The Y axis spans seven orders of magnitude.

9.5 Variations

9.5.1 Mini-pointers (sometimes useful)

In Cleary’s original paper, he describes a way of speeding up accesses by

using a little more space per cell [14, Section III.B]. The idea is to speed

up synchronization of MAPPED bits and CHANGE bits by storing with each

MAPPED bit the location offset of the matching CHANGE bit, if it falls within

the representable range of offsets. In most cases, the offset will be small

9.5. VARIATIONS 165

enough to be represented exactly and synchronization will be immediate.

When the real offset is out of range, we must search for a synchronization

point, such as an association whose offset is in the representable range.

However, this is mostly a speed improvement for QUERY, because ADD

must still search for an empty cell to shift entries into. In the visited set usage

paradigm, the improvement is mostly when QUERY returns positive, because

each negative QUERY becomes an ADD. In explicit-state model checking with

partial-order reduction, the number of ADD operations often exceeds the

number of positive QUERY operations. Thus, this space-vs.-time trade-off is

unlikely to be a good choice for the visited set paradigm. (Related work in

Chapter 12 is similarly optimized for fast QUERY operations.)

Recall that there is already a space-vs.-time trade-off in the maximum

allowed occupancy; thus, to be worthwhile, any space dedicated to these

miniature pointers (location offsets) should be recouped in the increase

in maximum occupancy made possible. Clearly, the payoff of these mini-

pointers will depend on the absolute cell size without the mini-pointers. For

example, an extra 4 bits per cell for mini-pointers increases the cell size of

an 8-bit-per-cell Cleary table by 50%; therefore, they should make a 96% oc-

cupied structure as fast as a 64% occupied structure without mini-pointers

to have a net benefit. For a 64-bit-per-cell table, the payoff is around 96%

occupancy with mini-pointers being as fast as 90% occupancy without mini-

pointers.

Even if there is a net payoff for large cell sizes in the visited set paradigm,

mini-pointers add another layer of complexity to the implementation, par-

ticularly when using adaptation (Chapter 10). I did not feel the added com-

plexity was worth the limited payoff to pursue this optimization.

166 CHAPTER 9. CLEARY TABLES

9.5.2 Non-power-of-two number of cells (sometimes

useful)

So far we have assumed that the number of cells (and home addresses)

in a cleary table is a power of two. If we can control the range of values

representable, then it is reasonably easy to accommodate any number of

cells. In the common case of using a Cleary table to over-approximate a set

(see the reduction in Chapter 8), if we can get a non-power of two range

from our hash function then we can get a non-power of two number of cells.

For example, if we have 175MB of memory for the table and want at least

40 million cells, how big should the cells be and what should the range of

the hash function be? 1 468 006 400 bits for 40 million cells is 36.70 bits

per proposed cell. Dealing with fractions of bits for the cells is too much of

a hassle, so we round down to 36 bits per cell (2 metadata, 34 entry). In

that case, we can have 40 777 955 (= 1468006400/36) cells, or approximately

25.28 (= lg 40777955) address bits. Combining the address and entry, each

hash value should be a non-negative integer less than 700559932491038720

(= 40777955 × 234), or approximately 59.28 (= 34 + 25.28) bits. If we use

a stock hash function producing 64 bits of output, we can use 34 bits for

the entry, take the remaining 30 bits as an unsigned integer and mod it by

40777955.

Another way to support a number of cells that is not a power of two is to

allow the number of cells and home addresses to be different, as described

next. This allows us to use a power-of-two number of home addresses with

any number of cells.

9.5.3 Different number of cells and home addresses

(sometimes useful)

The Cleary table is more adaptable without the requirement of exactly one

MAPPED bit per cell. The algorithms require little adjustment to treat home

9.5. VARIATIONS 167

addresses (the nth MAPPED bit) as distinct from preferred locations (the mth

cell), but a good mapping from home addresses to preferred locations is im-

portant. Also needed is a decoupling of cells and MAPPED bits in the physical

layout, so that the numbers of each can be chosen freely.

This section supports these basic findings: the best home-address-to-cell

ratios seem to be from 1.0 to 2.0, a good mapping is just a scaling from the

domain of home addresses to the range of preferred locations, and putting

the MAPPED bits in their own bit vector is the easiest layout.

9.5.3.1 The sweet spot

Starting simple, consider the following modification to the standard Cleary

table: suppose there are twice as many home addresses (twice as many

MAPPED bits) but the same number of cells (CHANGE bits and entries). In

this case, the mapping from home addresses to preferred locations would

be a single bit right shift, so that each cell is the preferred location for two

(adjacent) home addresses. Because we have one more address bit, we

don’t need one of the old entry bits. This means we’re storing the same

information in the same amount of space, and negative queries are likely

to be much faster, because the probability of the MAPPED bit being unset is

nearly double.

Can we take that a step further? If we double the number of home

addresses again we increase the MAPPED bits per cell from two to four, while

removing the need for only one entry bit per cell. This means that taking

another step further in the direction of more MAPPED bits makes the structure

take more space.

Let us consider going in the other direction: modifying the standard

Cleary table to have half as many MAPPED bits: one for every two cells.

In that case, we save one MAPPED bit for every two cells at the cost of one

more entry bit for every cell. This means that a Cleary table with a home-

168 CHAPTER 9. CLEARY TABLES

address-to-cell ratio of 0.50 requires more memory than one with a ratio or

1.0 or 2.0. We also saw how 4.0 required more memory. This suggests that

the 1.0 to 2.0 range is a “sweet spot”.

9.5.3.2 In theory

We can actually set up this optimization problem as a formula and set the

derivative equal to zero to find the configuration that minimizes memory

required. Recall that if c cells are in the table, the memory required is c(lg u−

lg c + 2) bits, but since we are decoupling the number of cells and number

of home addresses, it is really c(lg u− a+ 1) + 2a, where a is the number of

home address bits. (There are 2a MAPPED bits and c CHANGE bits, and each

entry is lg u− a bits.)

To minimize that with respect to a, we can set its derivative equal to zero,

and get

a = lg
c

ln 2

or an optimal home-address-to-cell ratio of

2a

c
=

1

ln 2
≈ 1.44

This makes sense because it corresponds to maximizing the entropy in

the MAPPED bits when the structure is completely full. If α is the propor-

tion of cells occupied and r is the home-address-to-cell ratio, the expected

proportion of MAPPED bits set is

1− e−α/r

For α = 1 and r = 1/ ln 2, this is 1/2, which maximizes entropy in the

MAPPED bits.

In practice, it is too awkward to compactly store entries that are not a

whole number of bits, so using r = 1.44 in every case does not make sense.

9.5. VARIATIONS 169

Instead, one should use the whole number of entry bits that puts r between

1.0 and 2.0.

9.5.3.3 Non-power-of-two ratio

As claimed previously, we can support a non-power-of-two number of cells

with a power-of-two number of home addresses, and here is how that works.

For a given number of cells, we use a number of home addresses that is the

next power of two larger than the number of cells. This yields a home-

address-to-cell ratio in the sweet spot of 1.0 to 2.0, and has the advantage

that the number of home addresses is a power of two, so the address portion

of each element is a whole number of bits.

An obscure ratio, however, complicates efficient implementation. Laying

out 1.0 or 2.0 MAPPED bits per cell is simple, but something like r = 1.38 is

more difficult. I see three options:

1. Intersperse the MAPPED bits among the cells, and use complicated logic

to address each entry and metadata bit. (A special case of this is used

in the “accurate” variant of adaptive storage in Chapter 11.)

2. Round the number of MAPPED bits per cell up to the next whole num-

ber, so that everything is easily addressable, but the extra MAPPED bits

are wasted unless they are also used as home addresses. (The method

of implementing non-power-of-two cells in Section 9.5.2 can use such

extra MAPPED bits.)

3. Store the MAPPED bits in their own bit vector. (This option is easiest,

but reduces memory locality and reduces dynamic adaptability in that

it is not compatible with the algorithms in Chapter 10.)

The last main piece needed is a mapping from home addresses (MAPPED

bits) to preferred locations (cells with CHANGE bits). To minimize access

times, the preferred locations should be spread as evenly as possible over

170 CHAPTER 9. CLEARY TABLES

all the cells, so that the cell occupancy is consistent throughout. A poor

mapping, for example, would be the home address MOD the number of

cells. This would create a contiguous region where each cell is the preferred

location for two home addresses and another region where each cell is the

preferred location of just one home address. This would create an imbalance

in which lookups could degrade to linear search at occupancies well below

100%. There could easily be no unoccupied entries in one contiguous half

of the structure at just 80% occupancy, for example.

A good mapping is to multiply the home address by r−1 and round down

to get the preferred location. (Implementation note: Floating point arith-

metic is fine. Store r−1 to avoid repeated division, which might be much

slower than multiplication.) Like before, some cells are the preferred loca-

tion for two home addresses each and the rest for just one each. In this case,

however, the twos are spread evenly throughout.

It might seem that there is no avoiding the local imbalance in the “good”

mapping, which surely has a small effect on access times, but I suspect it

is correctable by considering the entire element or hash value—not just the

home address—in computing the preferred location. It might seem that

every element with the same home address must have the same preferred

location, but I believe that can be relaxed to allow elements with the same

home address to map to one of two adjacent preferred locations—using the

same algorithms. In this dissertation, I do not investigate this possible en-

hancement any further, largely because it would complicate the adaptation

algorithms in Chapter 10.

9.5.4 Edge extension or edge wrapping (marginal benefit)

One of the concerns sometimes raised about the “standard” Cleary table I

have described is that entries might “bunch up” at the edges of the struc-

ture, where runs can expand only in one direction. The edges do cause

9.5. VARIATIONS 171

imbalances in the structure, but perhaps not in the way one might expect.

We can enhance the Cleary table to correct these imbalances and improve

access times, but the imbalances and the improvements seem to disappear

asymptotically.

Cleary briefly discusses alternative strategies for handling edges [14, Sec-

tion II, last paragraph], proposing one could either make the array “circular,”

which I shall call edge wrapping, or make extra cells available beyond those

that serve as preferred locations, which I shall call edge padding. The latter

was proposed by Amble and Knuth [2].

My testing consistently shows that in a standard Cleary table, cells close

to the extremes are less likely to be occupied. See Figure 9.7 for experimental

results. This might be the opposite of what one expects, but it nevertheless

leads to a small imbalance in expected occupancy. See Figure 9.6 for a rough

explanation of this behavior.

It is also clear from Figure 9.7 that edge wrapping is balanced. This is

easy to believe, because with edge wrapping, all cells are created equal, with

no prior advantages or disadvantages to any particular cells.

In that same figure, edge padding has imbalances, but has consistently

lower occupancy, which is likely to translate into lower access times. This is

somewhat misleading, though, because edge padding requires more space

for the extra cells. If we compared them with each using the same amount

of space, padding would be much less attractive for its imbalances, but such

a direct comparison might be misleading, because the amount of padding to

preallocate is subjective (more below).

Comparing Figure 9.8 to Figure 9.7 indicates that the imbalances due to

edge handling are really only significant for small Cleary tables. For large

Cleary tables, the “balance” of an edge handling scheme should have little

significance in choosing, because the imbalances are insignificant. Some

other factors in choosing an edge handling scheme follow.

Although edge wrapping is very “balanced,” it is tricky to implement. An

172 CHAPTER 9. CLEARY TABLES

sum

Figure 9.6: A rough explanation for small imbalances in the expected cell occu-
pancy of a standard Cleary table. Consider a Cleary table with four cells. For
each home address, consider the possibility of there being a run associated with
it and where the occupied cell or cells for that run would be located. Roughly
speaking, add these up for all home addresses, and that suggests the probability
of each cell being occupied. The basic idea is that cells on the edge are less likely
to be occupied because “pressure” can only come from one direction.

example of a tricky aspect of implementation is that the empty cell search

needs to report not only the location of the nearest empty cell, but also the

direction of the nearest empty cell. Without wrapping, the direction is easy

to determine from the location, using greater-than and less-than compar-

isons. With wrapping, the location might be “to the right” even though it

was found by searching “to the left” (and vice-versa). This and the other is-

sues are solvable, but it complicates the invariants of an already complicated

algorithm.

Also note that edge wrapping requires at least one cell to remain unoc-

cupied, because the edges of the table are not synchronization points if edge

wrapping is used.

I suspect that edge padding was not entirely motivated by relieving “edge

pressure.” I suspect it was used to eliminate bounds checks, simplifying the

9.5. VARIATIONS 173

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Pr
ob

ab
ili

ty
oc

cu
pi

ed
(o

bs
er

ve
d)

Cell index

Standard
Edge padding

Edge wrapping

Figure 9.7: Observed occupancy probabilities for each cell in Cleary tables
with different edge behaviors. These results came from repeatedly simulating 14
unique, random additions to Cleary tables with 16 cells, not including padding.
The nominal overall occupancy is therefore 14/16 = 0.875 (87.5%). For each
design, we ran one million iterations, each adding 14 values to a fresh table.
The graph shows for each cell position the proportion of iterations in which that
cell was occupied after the additions. The “Edge padding” design is the only one
that uses cells beyond the standard 16, numbered 0 to 15.

standard implementation (rather than complicating it) and eliminating some

conditional branches in the CPU. The thinking is that if the padding is large

enough that overrunning it is highly unlikely, then the simpler, faster imple-

mentation with no bounds checking works—with high likelihood. However,

such an implementation could threaten both stability and security, and con-

temporary computing practices favor eliminating such threats.

To be sure edge handling has no effect for large structures, I evaluated

the speed of a structure using edge padding in Figure 9.4. There was no

observable difference between that and the standard Cleary table. Because

this edge-padding structure used extra memory the standard did not, we

174 CHAPTER 9. CLEARY TABLES

0

0.2

0.4

0.6

0.8

1

0 85 170 255

Pr
ob

ab
ili

ty
oc

cu
pi

ed
(o

bs
er

ve
d)

Cell index

Standard
Edge padding

Edge wrapping

Figure 9.8: Observed occupancy probabilities for each cell in larger Cleary ta-
bles with different edge behaviors. These results are essentially a re-run of the
experiment from Figure 9.7 with sizes increased by a factor of 16. In each of
100 000 iterations for each design, 224 values were added to 256 cells, not in-
cluding padding. Comparing these results to Figure 9.7 suggests that occupancy
imbalances due to edge handling are asymptotically insignificant.

would expect edge wrapping to be between the two. (It has not been worth

the effort to make a full, optimized implementation of edge-wrapping.)

9.5.5 Correcting directional favor (marginal benefit)

A careful examination of Figure 9.7 reveals that the non-wrapping results are

lopsided. The reason is that in a standard implementation, the bidirectional

search for an empty cell favors the same direction every time. In this case, it

favors left, evident by the “0” cell being more likely to be occupied than its

mirror cell “15.” In the empty search, after checking the preferred location,

there is no avoiding the choice of whether to check the location to the left

first or check to the right first. Making the same choice every time, however,

9.5. VARIATIONS 175

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15

Pr
ob

ab
ili

ty
oc

cu
pi

ed
(o

bs
er

ve
d)

Cell index

Standard - Favors Left
Random Favor
Favors Outside

Figure 9.9: Observed occupancy probabilities for each cell in Cleary tables with
different directional favors. These results are based on the same setup as Fig-
ure 9.7, except that the “Random Favor” and “Favors Outside” configurations
are new. All configurations here use standard edge handling. The “Favors Left”
results are the same as the “Standard” from Figure 9.7.

adds to imbalances due to edge handling. (Note that edge wrapping seems

to suffer no ill effect.)

Besides using edge wrapping, there are at least two basic remedies. First,

we can effectively randomize which direction to favor, either by acquiring a

pseudorandom bit or by using the least significant data entry bit.Second,

we can attempt to use the favor to counteract the imbalances due to edge

handling, and always favor the “outside,” the direction of the nearest edge.

Experimental results in Figure 9.9 indicate that randomizing corrects the

lopsidedness and that favoring the outside goes further in reducing the im-

balance of standard edge handling (and of edge padding; not pictured). The

difference should not matter for large structures, however.

176 CHAPTER 9. CLEARY TABLES

9.5.6 Unidirectional (not recommended)

Unidirectional linear probing can be used in place of bidirectional linear

probing in a Cleary table, but comes with a significant increase in access

times. It also requires either edge wrapping or edge padding to prevent pre-

mature overflow. Basically, we modify the unoccupied search to search only

in the forward direction. The rest of the algorithm needs no modification;

however, the logic handling the case of the empty cell coming before the

preferred location can be removed.

Figure 9.10 is a visual explanation of why bidirectional probing is cheaper

overall for a Cleary table. The difference in work involved in adding or

querying a value is not in the search for an empty cell, which is similar on

average. The difference is in what comes after the empty search. Because

the bidirectional empty search finds the empty cell nearest to the preferred

location, the work in finding or making room for the current value is, in

expectation, about half of what it is with unidirectional probing.

Figure 9.11 shows how the different edge handling strategies interact

with unidirectional probing with respect to cell occupancies. Edge wrap-

ping continues its robust showing of balance in cell occupancies, while edge

padding is particularly imbalanced when used with unidirectional probing.

Figure 9.4 shows the actual speed of using unidirectional probing has a

significant impact on verification times. It seems to nearly double the impact

of occupancy. This makes sense, since there’s a mixture of operations that

match an existing entry and those that insert a new entry.

Finally, there is an interesting relationship between “standard” edge han-

dling and unidirectional probing. In a standard Cleary table, the closer to an

edge the preferred location for an access is, the more that access behaves like

a unidirectional access. If the preferred location is at the edge, the empty

search proceeds in just one direction, and we expect to re-search after the

empty search about as many cells as we covered in the empty search, rather

9.5. VARIATIONS 177

����������
����������
����������
����������

Work for unoccupied cell search

Work for shifting to empty
Bidirectional

Bidirectional

low high

Unidirectional (forward)

Unidirectional (forward)

Work for unoccupied cell search

Work for shifting to empty

Contiguous occupied cells
with unoccupied on either side

all

all

all

all

B2

B1

U1

U2

max is half

almost none

almost none

almost none

almost none

Figure 9.10: The idea behind why bidirectional linear probing is more efficient
than unidirectional in a Cleary table. Consider a contiguous sequence of occu-
pied cells in a Cleary table with unoccupied cells on each side. The B1 and U1

graphs show what portion of the sequence is searched before an unoccupied cell
is found, for each starting position in that sequence. For this part of the opera-
tion, the aggregate costs (area under each curve) are the same. The B2 and U2

graphs show what portion of the sequence must be shifted for inserting a new
element, for each insertion position in that sequence. Here, the aggregate cost
(area under the curve) for bidirectional probing is much lower, because shifting
is always done toward the nearest unoccupied cell.

178 CHAPTER 9. CLEARY TABLES

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Pr
ob

ab
ili

ty
oc

cu
pi

ed
(o

bs
er

ve
d)

Cell index

Standard - Bidir
Edge padding - Bidir

Edge wrapping - Bidir
Edge padding - Unidir

Edge wrapping - Unidir

Figure 9.11: Observed occupancy probabilities for each cell in Cleary tables
using unidirectional linear probing. These results are based on the same setup
as Figure 9.7, except that the “Unidir” configurations are new. The results from
Figure 9.7 are labelled here as “Bidir” because they use bidirectional linear
probing. The two configurations using edge wrapping are indistinguishable
from their cell occupancies.

than about half as many, which is the usual case for a table using bidirec-

tional probing.

9.5.7 Summary of Variations

A structure has limited usefulness when it only supports sizes that are pow-

ers of two. I have described two ways of supporting non-power-of-two sizes,

each with its own strengths for certain environments. Understanding how to

best to decouple cells and home addresses, involved in one of the solutions,

is not just about a solution to a technical problem; it also gives us a deeper

understanding of the standard Cleary table.

Although the standard Cleary table has imbalances that favor some cells

9.6. SUMMARY 179

over others, this is not a problem for large tables, and is correctable with

edge wrapping nevertheless. I chose not to consider the edge wrapping

Cleary table the “standard” version because it is more difficult to explain

and more difficult to implement. Cleary himself included edge padding in

his standard table [14, Section II, last paragraph], but I do not see any good

reasons to use it and I prefer to avoid its issues and complications.

I cannot think of any reason to use unidirectional probing in a Cleary

table, unless perhaps one were accessing a Cleary table on disk, or one really

needed to optimize for small code size. Bidirectional is faster.

Getting faster QUERY times by using mini-pointers is likely to pay off for

large cell sizes, but such an space-vs.-time trade-off is at a disadvantage

in the visited set paradigm, which relies heavily on adding more elements.

Particularly when using adaptation (Chapter 10), the added code complexity

should also be considered.

9.6 Summary

As an exact representation of a set, the Cleary table is remarkably compact,

with the help of my optimization of its metadata. It is also among few such

structures that scale perfectly, with an adequate hash function. As an over-

approximation of a set, the Cleary table has accuracy similar to a Bloom

filter, except when memory per added element is very low. The structure

is fast unless it is allowed to exceed about 90% occupancy, because it uses

linear probing. However, one can use the maximum occupancy to trade

speed for compactness/accuracy.

The next chapter utilizes what I consider the true strength of the Cleary

design: the potential to adapt the structure dynamically to accommodate

more elements.

CHAPTER 10

Dynamic adaptation of Cleary tables

A key insight of this dissertation is that the Cleary table representation allows

for fast, on-the-fly adaptation to accommodate more elements in the same

space with less precision. Contribution: Here I describe algorithms for such

adaptation and the “closer-first” traversal that underlies them. The traversal

is based on properties of Cleary tables that I prove.

We are able to adapt between various Cleary table configurations and

also to a k = 1 or hash-reusing k = 2 Bloom filter. The simplest Cleary table

to Cleary table adaptation is doubling the number of cells by cutting the size

of each in half. More complicated is splitting each two cells into three and,

as needed, those three into four. Other adaptations are possible, but I focus

on those that work well in the adaptive storage scheme of Chapter 11.

Except for the 2-to-3 and 3-to-4 adaptations below, these algorithms sup-

ported the adaptive scheme we introduced in a SPIN Workshop paper [26].

The scheme is elaborated in Chapter 11.

10.1 Understanding fast adaptation

The basic algorithm depends on a traversal I call “closer-first,” in which all

table entries between a given entry and its home address are processed be-

fore that entry is. As described below, this enables the adaptation to happen

in place, with O(1) auxiliary storage, and moving each entry at most once.

181

182 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

Before describing the algorithm, I will motivate the need for a “closer-

first” traversal by considering the drawbacks of other conceivable solutions.

For this example, I focus on the case of adapting a Cleary table to have twice

as many cells of half the size.

Consider an example in which each cell is 32 bits (b = 30 entry bits, the

“payload”) before adaptation and 16 bits (b′ = 14 entry bits) after adapta-

tion. If there are 220 cells before adaptation (a = 20 address bits), then there

are twice as many, 221 cells, after adaptation (a′ = 21 address bits). Since

each hash value is composed of the part in the cell entry and the part implicit

in the home address, the size of each represented hash value is the sum of

the two sizes: b+ a = 50. Or after adaptation: b′ + a′ = 35. The represented

hash values after adaptation are fifteen bits smaller. Note that although six-

teen bits were lost per cell entry, one was gained in each address.

More generally, for any number of address bits, a, and even number of

entry bits b, we can derive the new number of address bits, a′, and entry bits

b′ after adapting to twice as many cells of half the size. With twice as many

cells after adaptation, a′ = a+ 1. With each cell having two bits of metadata

(see Chapter 9) and cells being half the size after adaptation, 1
2
(b+2) = b′+2,

or b′ = b/2− 1.

The goal of adapting a Cleary table of hash values is for the new Cleary

table to represent truncated versions of those same hash values. In our

example, we have to choose 15 bits to throw away and 35 to keep, and we

have to divide those 35 into 21 address bits and 14 entry bits. The following

rule seems to be important to fast, in-place adaptation of Cleary tables and

also dictates how the hash value bits should be migrated:

Rule 10.1. The order of hash values in a Cleary table should be the same before

and after adaptation.

The goal of this rule is to minimize the space, time, and conceptual com-

plexity of the adaptation procedure. See Figure 10.1 for a “before and after”

10.1. UNDERSTANDING FAST ADAPTATION 183

Index (bin)

Change
Mapped

Data entry

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

Index (bin) 000 011 100 101 110 111001 010

Data entry

Change
Mapped

Values represented: 000101001
000101100
011110101

100010101
100111011
101110010
111011011

100001110

bits lost in adaptation

Adapting from 8 bits / cell (6 data + 2 meta) to 4 bits / cell (2 data + 2 meta) ...

10 1101 0110 11 10

101100 001110 010101110101 111011 110010 011011101001

Figure 10.1: A simple “before and after” example of 1-to-2 Cleary table adap-
tation. Notice that the total memory bits, 64, is the same before and after
adaptation, and that the order of the represented values is unchanged. The
underlined portion of the data entry before adaptation is the data entry after.
Besides the underlined, one entry bit becomes an address bit and three entry bits
are lost. In this example, the first two values are merged because they are only
distinguishable by the bits lost in adaptation. An equally valid result of adap-
tation, representing the same values, would have some of the middle entries
shifted to the right by one cell; the result shown matches the result of my algo-
rithm in Section 10.3. Note that the four-bit-per-cell Cleary table is used only
for demonstration purposes, as it is inferior to a simple bit table (Section 9.3).

184 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

example of adaptation, going from eight bits per cell to four and keeping the

order of represented values the same.

Ideally, the adaptation would be possible with a linear scan over the

entries, adapting each in place. This is actually possible if we were to give up

Invariant 9.2, but to have random access, we must guarantee no unoccupied

cells between an entry and its preferred location. Because of all the extra

free space opened up by adaptation, we have to move entries closer to their

preferred locations to satisfy the invariant. The example in Figure 10.1 is

on point. If adaptation were to put each entry into one of the two new

cells made from the old cell containing it, there would be unoccupied cells

between some entries and their preferred location, violating Invariant 9.2.

If we attempt to move entries to their new locations one-by-one using

a simple linear scan, we fail because the new location in memory might be

occupied by an entry we have not yet moved. In simple terms, some entries

must be moved to the “left” and some to the “right,” as in the entries at

addresses 110 and 010 in Figure 10.1, respectively. Thus, neither a left-to-

right nor a right-to-left pass is free of interference.

If one used more than O(1) auxiliary space, one could go entirely left-

to-right or right-to-left, by queuing up states to be written later. For our

problem, however, we want almost all of core memory dedicated to the

Cleary table. In some cases, it might be reasonable to use out-of-core storage

(disk) for adaptation, but my solution should prove that not necessary.

How efficiently can we visit the entries in an order that ensures the des-

tination location is always available for writing? My solution is close to a

simple linear scan, in both practical and theoretical terms, as described in

the next section.

10.2. CLOSER-FIRST TRAVERSAL 185

10.2 Closer-first traversal

If we are adapting a Cleary table to a configuration with smaller entries, and

the memory for the original preferred location of each entry encompasses

the memory for the new preferred location, a “closer-first” ordering allows

entry-by-entry adaptation without overwriting entries not yet adapted. In

other words, if we follow this certain ordering, we can read each entry from

its location in the the original structure, throw away part of it, and store the

new entry in its new location—one entry at a time.

10.2.1 Description

The ordering constraint is this:

Definition 10.2. A closer-first traversal of Cleary table entries is one that

guarantees that the entries between any given entry and its preferred location

(inclusive) are visited before that entry.

To understand why this ordering constraint is feasible and prevents over-

writing entries, we need a lemma on the structure of Cleary tables:

Lemma 10.3. Consider each maximal sequence of adjacent, occupied cells in

a Cleary table, in low-to-high (“left” to “right”) order. Each can be divided

uniquely into subsequences each with the following structure:

• Zero or more “right-leaning” entries each with its preferred location

higher than its actual location, followed by

• One “pivot” entry at its preferred location, followed by

• Zero or more “left-leaning” entries each with its preferred location lower

than its actual location.

See Figure 10.2 for an example of categorizations and subsequences.

186 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

Index (bin) 000 011 100 101 110 111001 010

P P P

2 5 4 3 6 7 81

Data entry

Change
Mapped

Categorization

Traversal order

101100 001110 010101110101 111011 110010 011011101001

Figure 10.2: Categorizations and traversal order for Cleary table adaptation.
This is the same example as Figure 10.1. The “Categorization” line shows
the categorizations and subsequences for Lemma 10.3. The “Traversal order”
line shows the order of visitation for the standard closer-first traversal (Defini-
tion 10.5).

Proof First, each cell in a Cleary table can be categorized as either (1) unoc-

cupied, (2) right-leaning, (3) pivot, or (4) left-leaning. Invariant 9.1 ensures

that every occupied cell stores an entry associated with a preferred location,

so each occupied cell must be either right-leaning, a pivot, or left-leaning,

depending on whether its preferred location is higher than, equal to, or

lower than its actual location, respectively.

With categories on each cell, we prove the lemma using finite automata.

Consider the possible sequences of categorizations of all cells in a well-

formed Cleary table. We reduce the lemma to the proof that the automa-

ton of Figure 10.3 (upper) allows all such sequences. But first we prove the

reduction, which requires that all sequences allowed by the automaton to

satisfy the lemma. First, observe that each time we see a cell in a particular

category, we move to the state with that label. This allows us to easily cou-

ple those with concepts in the lemma, by considering each transition in the

automaton:

• From “(start)” to “right-leaning” is allowed because the first cell in the

Cleary table could be right-leaning, as the start of a subsequence.

• From “(start)” to “pivot” is allowed because the first cell in the Cleary

10.2. CLOSER-FIRST TRAVERSAL 187

leaning
right− left−

leaning

(end)(start) occupied
un−

pivot

missing edges:

leaning
right− left−

leaning

(end)(start) occupied
un−

pivot

Figure 10.3: Allowed and disallowed categorization combinations of adjacent
cells in a Cleary table. The upper diagram is a finite automaton constraining
the possible sequences of cell categorizations in a Cleary table. The automaton
matches the categorization of all cells in sequence, starting before the lowest
location, “(start),” and ending after the highest, “(end).” To prove that the
automaton allows all categorization sequences in a well-formed Cleary table,
we prove that each missing edge, depicted in the lower diagram, is infeasible.
We use this result in the proof of Lemma 10.3. (In the lower diagram, trivially
infeasible edges leading to “(start)” or coming from “(end)” are elided.) (Unlike
standard DFAs, which have labels on edges, this automaton has the special
property that each incoming transition of a state is based on seeing the same
thing, and I have labelled that on the state.)

188 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

table could be a pivot, as the start of a subsequence with zero right-

leaning entries.

• From “(start)” to “unoccupied” is allowed because the first cell in the

Cleary table could be unoccupied.

• From “(start)” to “(end)” is allowed because the lemma does not tech-

nically forbid a zero-cell Cleary table.

• The four edges with filled arrows are within a subsequence, and cor-

respond directly to the description of subsequences in the lemma.

• A “pivot” can directly follow a “pivot,” because the first may have no

left-leaning cells in its subsequence and the second may have no right-

leaning cells in its subsequence.

• . . . (reader can verify the remaining edges similarly)

Since every behavior of the automaton is allowed and classified by the

lemma, all we have to verify is that all legal sequences of cell categorizations

in a Cleary table are allowed by the automaton. We prove this by showing

that all transitions disallowed by the automaton are not legal in a Cleary

table. All the disallowed transitions correspond to edges missing from the

automaton; they are depicted in the lower part of Figure 10.3. Trivially in-

feasible edges leading to “(start)” or coming from “(end)” have been elided.

We consider those remaining:

• A Cleary table can’t start with a left-leaning cell because, based on

Invariant 9.1, the preferred location for the entry in that cell must be

a valid location, which cannot be to the left.

• Similarly, a Cleary table can’t end with a right-leaning cell.

• A left-leaning cell cannot immediately follow an unoccupied cell, be-

cause that would violate Invariant 9.2, which disallows unoccupied

cells between an entry and its preferred location.

10.2. CLOSER-FIRST TRAVERSAL 189

• Similarly, a right-leaning cell cannot immediately precede an unoccu-

pied cell.

• A left-leaning cell cannot immediately follow a right-leaning cell be-

cause this would violate how the metadata match entries with home

addresses. Invariant 9.1 and interpretation of the metadata guarantee

that if entry y is right of entry x, then the preferred location of y cannot

be to the left of entry x.

Thus, there are no legal configuration sequences disallowed by the au-

tomaton in Figure 10.3. �

Let us review the hierarchy of interesting cell sequences in a Cleary table:

• A run is all the cells whose entries map to a particular home address.

By the interpretation of metadata and Invariant 9.2, such entries must

be adjacent to one another.

• A Lemma 10.3 subsequence is a maximal sequence of right-leaning fol-

lowed by a pivot followed by left-leaning entries, as described in the

lemma. Such a subsequence could be composed of any whole number

of adjacent runs. As we will see, a subsequence is also “self-contained”

for adaptation purposes, meaning the adaptation of one does not in-

terfere with the adaptation of another.

• An occupied sequence is a maximal sequence of adjacent, occupied

cells. Such a sequence could be composed of any whole number of

Lemma 10.3 subsequences. It is also “self-contained” for random ac-

cess purposes, because each random access stays within the immediate

frontier of an occupied sequence.

• A Cleary table has zero or more occupied sequences, with unoccupied

cells in between.

Lemma 10.3 helps us to realize a closer-first traversal:

190 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

Theorem 10.4. Using the Lemma 10.3 categorizations of cell entries, the fol-

lowing is a realizable partial-order plan for a closer-first traversal of Cleary

table cell entries:

• Pivot entries have no dependences.

• The dependence predecessor of a “right-leaning” entry is the entry to its

right.

• The dependence predecessor of a “left-leaning” entry is the entry to its left.

Proof By induction, I show that the dependences are sufficient to guarantee

a closer-first ordering. And to show realizability, I use Lemma 10.3 to show

that the plan is well-formed and acyclic.

The base cases of the induction are the pivots. By definition, they are

entries at their preferred location; thus, it is trivially true that all entries

between a pivot and its preferred location have been visited.

For an X-leaning entry (for X ∈ {left, right}), the dependence on the

adjacent entry in the X direction allows us to assume that it has been visited,

along with its dependencies. By the definition of X-leaning, the preferred

location for the current entry must be in the X direction. Suppose, however,

that the preferred location for the current entry is farther in the X direction

than the preferred location for the adjacent entry in the X direction; this is

not possible due to the interpretation of metadata in a Cleary table. Thus,

the induction hypothesis guarantees that the dependences of the current

entry are met.

Now I show that the plan is well-formed and acyclic. Lemma 10.3 guar-

antees that an X-leaning entry has an adjacent entry (occupied cell) in the X

direction, because otherwise, one would be able to violate the subsequence

structure. This means that the dependences claimed in the partial-order

plan actually exist. The only way to get a cycle would be for a left-leaning

entry to be to the immediate right of a right-leaning entry. Such a config-

10.2. CLOSER-FIRST TRAVERSAL 191

uration would also violate the subsequence structure of Lemma 10.3. The

dependences are, therefore, acyclic. �

To simplify terminology, I will call the “dependence predecessors” of The-

orem 10.4 closer-first predecessors. Thus, a pivot has no closer-first pre-

decessor and the predecessor of an X-leaning entry it the entry immediately

in the X direction.

The simplest closer-first traversal is useful and efficient for implementa-

tion on a single processor core:

Definition 10.5. The standard closer-first traversal of Cleary table entries

is a “left”-to-“right” (low to high index) traversal modified to satisfy closer-first

dependences lazily.

Here is a more specific definition of the standard closer-first traversal:

Lemma 10.3 subsequences are processed one at a time in left-to-right order.

Within each subsequence, the pivot is visited first, followed by any right-

leaning entries in right-to-left order, followed by any left-leaning entries in

left-to-right order. For example, see the traversal order in Figure 10.2.

10.2.2 Algorithm

From an implementation standpoint for a single thread, it would be ineffi-

cient to compute the boundary of a subsequence before processing (“visit-

ing”) its entries. At the start of a subsequence, we search for the next pivot,

“visit” it, and visit any right-leaning entries passed over in right-to-left order.

Then we visit entries after the pivot in left-to-right order, until we reach one

that is not left-leaning.

My highly-tuned Cleary table implementation in 3SPIN does not include

a generic closer-first traversal. Instead, the traversal is integrated with each

adaptation algorithm that—in concept—uses it. Here I present a generic ver-

sion of the traversal, so that it can be understood separately from adaptation

algorithms. However, their demands on the traversal are more complicated

192 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

than what I have already described. For example, as each entry is “visited,”

its home address needs to be passed along, in addition to its actual loca-

tion. Also, it is helpful to have separate call-backs for visiting the pivot, left-

leaning, and right-leaning entries, and to have these additional call-backs:

(1) before “visiting” an entry that is the first with its home address, and (2)

after “visiting” the left-most right-leaning entry in a subsequence. These are

easy to hook in to the traversal algorithm.

The closerFirstTraversal algorithm is specialized by passing it an ob-

ject that implements the CloserFirstVisitor interface, and thus providing

implementations for the abstract methods used in the algorithm.

// Additional declarations for ClearyTable class, from Section 9.2:
public static interface CloserFirstVisitor {

void preVisitHome(int home);

void visitRightLeaning(int loc, int home);

void visitPivot(int addr);

void visitLeftLeaning(int loc, int home);

void postVisitLeftMost(int loc, int home);

}

protected int findPivot(int startLoc) {
int loc = startLoc;

int home = startLoc;

for (;;) { // loop until return
while (!getMapped(home)) {

home = home + 1;

}
do {

if (loc == home) return loc;

loc = loc + 1;

} while (!getChange(loc));

home = home + 1;

}
}

10.2. CLOSER-FIRST TRAVERSAL 193

protected void traverseRtoL(CloserFirstVisitor visitor,

int pivotLoc, int leftLoc, boolean pivotChange) {
int loc = pivotLoc;

int home = pivotLoc;

boolean prevChange = pivotChange;

while (loc > leftLoc) {
if (prevChange) {

do {
home = home - 1;

} while (!getMapped(home));

visitor.preVisitHome(home);

}
loc = loc - 1;

prevChange = getChange(loc);

visitor.visitRightLeaning(loc, home);

}
visitor.postVisitLeftMost(leftLoc, home);

}

protected int traverseLtoR(CloserFirstVisitor visitor,

int pivotLoc) {
int loc = pivotLoc + 1;

int home = pivotLoc;

while (loc < num cells && isOccupied(loc)) {
if (getChange(loc)) {

do {
home = home + 1;

if (home == loc) return loc;

} while (!getMapped(home));

visitor.preVisitHome(home);

}
visitor.visitLeftLeaning(loc, home);

loc = loc + 1;

}
return loc;

}

194 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

public void closerFirstTraversal(CloserFirstVisitor visitor) {
int topLoc = 0;

while (topLoc < num cells) {
if (!isOccupied(topLoc)) {

topLoc = topLoc + 1;

} else {
int pivLoc = findPivot(topLoc);

boolean pivChange = getChange(pivLoc);

visitor.preVisitHome(pivLoc);

visitor.visitPivot(pivLoc);

traverseRtoL(visitor, pivLoc, topLoc, pivChange);

topLoc = traverseLtoR(visitor, pivLoc);

}
}

}
// End of additional declarations for ClearyTable class

The following theorem captures important bounds on the performance

of this algorithm.

Theorem 10.6. Assuming the provided CloserFirstVisitor object uses O(1)

space and each method call to the provided CloserFirstVisitor uses O(1)

time and O(1) additional space, the closerFirstTraversal algorithm re-

quires O(m) time and O(1) additional space, where m is the total number

of bits of memory used by the Cleary table.

Proof Idea The time bound is easy to see, because we iterate over each unit

of memory only a constant number of times. In a sense, we iterate over right-

leaning entries twice (once in findPivot and once in traverseRtoL), pivot

entries twice (once in findPivot and once in visitPivot), and left-leaning

entries once (in traverseRtoL). In more detail, we actually iterate of the

MAPPED bits and the non-MAPPED parts separately in the traverseRtoL and

traverseRtoL methods, but this only affects constant factors.

Note that a time bound of O(c) would not hold in theory unless we as-

sume (as my implementations assume) that each cell is a constant number

of machine words. (I am assuming the RAM model for complexity analy-

sis [17, Section 2.2].) Note also that O(m) is equivalent to O-of the number

10.3. 1-TO-2 ADAPTATION 195

of machine words of memory used.

The space bound is also easy to see, because the only additional state is

a constant number of indices into the table and boolean flags. Note that the

algorithm does not use recursion. �

10.3 1-to-2 adaptation

I now use the closer-first traversal to implement our first Cleary table adap-

tation procedure: doubling the number of cells, cutting their size in half, in

place. I call this 1-to-2 adaptation. Some bits at the end of each represented

value will be thrown away in the adaptation, so this procedure is really only

applicable when using the Cleary table as an inexact set representation—or

going from exact to inexact. Figure 10.1 shows an example input and output

of this adaptation operation.

The output occupies exactly the same memory as the input, so during the

adaptation, it will be accessed both as a structure with the input configura-

tion and as a structure with the output configuration. In fact, this algorithm

depends on the input configuration and output configuration overlapping in

the right way: bits for input cell i, including its two metadata bits, should

correspond to the bits for output cells 2i and 2i+1, including their metadata

bits. In fact, MAPPED bits in the input configuration must also be MAPPED

bits in the output configuration. Figure 10.4 shows a layout of the bits to

satisfy these constraints. Observe that with doubling the number of cells, the

quantity of metadata will double, but only gradually, as each cell is adapted.

Suppose instead we used the layout in which the metadata bits live in

their own bit vectors. It is not clear how best to make room for the new

metadata in order to split cells. One might need a pass over the entries to

compact them slightly to make room for all the new metadata before we

start splitting. The elegance of my approach, with the metadata beside the

entries in the cells, is that the space for new metadata becomes available

196 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

MC MC MC ME00 E01 E10 e0
0

e0
1

e1
0

Three entries in four cells (3−in−4):

(Entry 00) (Entry 01) (Entry 10)

MC MCMCMC E10 E11E01E00

Four entries in four cells (4−in−4):

MC MCE0 E1

Two entries in two cells (2−in−2):

1−
to

−
2

ad
ap

ta
tio

n

3−
to

−
4

2−
to

−
3

ad
ap

ta
tio

n
ad

ap
ta

tio
n

Figure 10.4: Example of bit layouts for Cleary tables that are compatible with
my adaptation algorithms. Each “C” is a CHANGE bit, each “M” a MAPPED bit,
and each “Exx” is an entry. In the 3-in-4 configuration, each entry is actually
the “Exx” part followed by the “exx” part. Note that “four entries in four cells”
(4-in-4) is treated as twice as many cases of “two entries in two cells” (2-in-2)
for further adaptation.

right as it is needed.

The closer-first traversal takes care of breaking the adaptation procedure

down into the adaptation of each entry; thus, the Adapt1to2Visitor listed

below implements CloserFirstVisitor. However, we need to pass infor-

mation about the adaptation of the closer-first predecessor of each entry to

adaptation of the successor. In particular, three pieces of information are

needed: (1) the new entry location of the predecessor is needed to deter-

mine where space is available for the successor; (2) the new home address

of the predecessor is needed to determine where an old run is being split

into two new runs; and (3) the new entry value of the predecessor is needed

to determine when two entries are no longer distinct and must be coalesced.

The new entry address of the predecessor is also used to set the CHANGE bit

on the predecessor when visiting right-to-left and splitting an old run in two.

These pieces of information could be obtained by re-examining the partially-

adapted structure, but that would raise the overall running time and code

complexity.

10.3. 1-TO-2 ADAPTATION 197

At a given time, there might be two active copies of the information

that needs to be passed from predecessor to successor, because we have to

remember information from the pivot for passing to a left-leaning succes-

sor while visiting the right-leaning entries. This justifies the six fields of

Adapt1to2Visitor that are auxiliary state for the adaptation.

The story of the MAPPED bits is complicated, because their traversal some-

times lags behind the traversal of the rest of the cells. In particular, when we

are visiting “leaning” entries, we cannot zero out the MAPPED bit in the same

cell when we zero out the CHANGE and entry bits, because the closer-first

traversal will only read that MAPPED bit once it reaches entries with that as

their home address. Only then can we clear the MAPPED bit. This happens in

the preVisitHome. Even though each old MAPPED bit will also be a MAPPED

bit in the new configuration, the same bit might not be set. If, for example,

the old MAPPED bit corresponding to address 100101 is set, that same bit

will only be set if there are values that start with 1001010. If the old run

only consists of values starting with 1001011, the bit will not be set. If there

are both, visitRightLeaning or visitLeftLeaning takes care of splitting

up the old run, where newHome is compared with the previous “new home.”

The remaining details of the algorithm should be understandable from

comments and trying examples, though a valuable exercise is outlining a

proof that the output has the same number of set MAPPED and CHANGE bits

(part of Invariant 9.1). Proof Idea All the old metadata bits are cleared, the

MAPPED bits in preVisitHome and the CHANGE bits in visit{RightLeaning,

Pivot,LeftLeaning}. The setting of a CHANGE bit in postVisitLeftMost

and a MAPPED bit in visitPivot account for one another because they each

happen once per Lemma 10.3 subsequence. Otherwise, when we set a

MAPPED bit in visitRightLeaning or visitLeftLeaning, we immediately

also set a CHANGE bit. �

198 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

// Additional declarations for ClearyTable class, from Section 9.2:
static class Adapt1to2Visitor implements CloserFirstVisitor {

ClearyTable t1; // source
ClearyTable t2; // destination, with same ”BitVect table”

// these six fields track state between calls
int rightNewLoc;

int rightNewHome;

long rightNewEntry;

int leftNewLoc;

int leftNewHome;

long leftNewEntry;

/** Constructor, for adapting from t1 to t2,
* which should share a memory table. */

Adapt1to2Visitor(ClearyTable t1 0, ClearyTable t2 0) {
t1 = t1 0;

t2 = t2 0;

assert t1.table == t2.table;

}

public void preVisitHome(int home) {
t1.setMapped(home, false);

}

public void postVisitLeftMost(int loc, int home) {
t2.setChange(rightNewLoc, true);

}

protected int getNewHome(int oldHome, long oldEntry) {
// from oldHome, insert highest bit of oldEntry as lowest
// order bit to get new home
int highBit = (int)(oldEntry >>> (t1.entry bits - 1));

return (oldHome * 2) + highBit;

}

protected long getNewEntry(long oldEntry) {
// shift away low bits to be thrown away and mask away
// highest bit (which becomes an address bit)
int throwAwayCount = t1.entry bits - t2.entry bits - 1;

long newMask = (1L << t2.entry bits) - 1;

return (oldEntry >>> throwAwayCount) & newMask;

}

10.3. 1-TO-2 ADAPTATION 199

public void visitPivot(int addr) {
// save needed information
int newHome = getNewHome(addr, t1.getEntry(addr));

long newEntry = getNewEntry(t1.getEntry(addr));

// clear away the old
t1.setEntry(addr, 0);

t1.setChange(addr, false);

// compute new location (trivial for pivot)
int newLoc = newHome;

// write new info
t2.setEntry(newLoc, newEntry);

t2.setMapped(newHome, true);

rightNewLoc = leftNewLoc = newLoc;

rightNewHome = leftNewHome = newHome;

rightNewEntry = leftNewEntry = newEntry;

}

200 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

public void visitRightLeaning(int loc, int home) {
// save needed information
int newHome = getNewHome(home, t1.getEntry(loc));

long newEntry = getNewEntry(t1.getEntry(loc));

// clear away the old
t1.clearEntryAndChange(loc);

// check for coalesce with predecessor
if (newHome==rightNewHome && newEntry==rightNewEntry) {

return;
}

// compute new location
int newLoc = Math.min(rightNewLoc - 1, newHome);

// write new info
t2.setEntry(newLoc, newEntry);

if (newHome != rightNewHome) {
t2.setMapped(newHome, true);

t2.setChange(rightNewLoc, true);

}

rightNewLoc = newLoc;

rightNewHome = newHome;

rightNewEntry = newEntry;

}

10.3. 1-TO-2 ADAPTATION 201

public void visitLeftLeaning(int loc, int home) {
// save needed information
int newHome = getNewHome(home, t1.getEntry(loc));

long newEntry = getNewEntry(t1.getEntry(loc));

// clear away the old
t1.clearEntryAndChange(loc);

// check for coalesce with predecessor
if (newHome==leftNewHome && newEntry==leftNewEntry) {

return;
}

// compute new location
int newLoc = Math.max(leftNewLoc + 1, newHome);

// write new info
t2.setEntry(newLoc, newEntry);

if (newHome != leftNewHome) {
t2.setMapped(newHome, true);

t2.setChange(newLoc, true);

}

leftNewLoc = newLoc;

leftNewHome = newHome;

leftNewEntry = newEntry;

}
} // end of class Adapt1to2Visitor

public ClearyTable adapt1to2() {
assert (cell bits & 1) == 0; // cell size must be even
ClearyTable t2 = // new ClearyTable uses same memory table

new ClearyTable(addr bits+1, cell bits / 2 - 2, table);

// construct visitor and execute traversal
closerFirstTraversal(new Adapt1to2Visitor(this, t2));

return t2;

}
// End of additional declarations for ClearyTable class

The following theorem captures important bounds on the performance

of this algorithm.

Corollary 10.7. Assuming each cell in the Cleary table is a constant number of

memory words, the adapt1to2 algorithm requires O(m) time and O(1) addi-

202 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

tional space, where m is the total number of bits of memory used by the Cleary

table.

Proof Idea The time bound is an obvious corollary of Theorem 10.6, be-

cause the methods in Adapt1to2Visitor do not have any loops or recursion.

For the space bound, we need an assumption that was not needed for

Theorem 10.6: that the cell size is O(1) space. Any given cell size can be

considered O(1) space, but for exact storage, the size usually depends on the

model complexity, and should not be considered O(1). For a given accuracy,

as an expected proportion of states hash-omitted, the cell size is O(1).

With that assumption, the space bound is a corollary of Theorem 10.6,

because the Adapt1to2Visitor object and its methods use only a constant

number of table indices and cell-sized data variables. The ClearyTable t1

is just a reference to the input table. The ClearyTable t2 wraps the same

BitVector with a different configuration, which uses a constant number of

index-size fields. �

10.4 2-to-3 and 3-to-4 adaptation

Cutting the size of each cell in half has a sudden, drastic impact on the

false positive rate of inexact storage with a Cleary table. The expected hash

omissions also jump nearly as suddenly. Going from 32 bits per cell to 16, for

example, increases the false positive rate by a factor of 215 = 32 768. Thus,

we only have to visit 1% more states after that adaptation for the expected

hash omissions to increase by a factor well over 300.

To ease such drastic rises in inaccuracy, I have designed an intermediate

step between doubling the number of cells. Updates to the ADD and adapta-

tion algorithms to support this intermediate step are not scientifically inter-

esting enough to warrant detailed listing. I describe the changes needed in

enough detail to convince the casual reader that they have the same essence

and computational complexity as those already detailed, or to guide an in-

10.4. 2-TO-3 AND 3-TO-4 ADAPTATION 203

terested reader in creating his/her own implementation.

10.4.1 3-in-4 design

The intermediate structure is tricky because we either have to give up on

having one home address for each preferred location (Section 9.5.3) or we

have to move only part of one bit of each entry to be part of the address.

I deal with values that are not a whole number of bits in order to accom-

modate non-power-of-two amounts of memory (Section 9.5.2), but I do not

like dealing with it otherwise. Thus, I prefer the former approach.

The middle of Figure 10.4 shows my design for this intermediate Cleary

table, which I call a 3-in-4 Cleary table. Essentially, we split adjacent pairs

of cells into a group of four “cells” that has four MAPPED bits but only stores

up to three entries. The last “cell” in each group stores parts of each of the

previous three entries. I will explain some of the motivators for this design.

First of all, by either doubling the number of MAPPED bits or keeping it

the same, we either add one address bit or keep the same number. This

makes computing updated addresses for adapted values no more compli-

cated than for 1-to-2 adaptation.

Second, we should double the number of MAPPED bits for the 2-to-3 adap-

tation rather than the 3-to-4 adaptation, because the best home-address-to-

cell ratios are between 1.0 and 2.0 (Section 9.5.3). Four home addresses

for every three entries uses less memory than two home addresses for every

three entries would.

Third, by making sure the output MAPPED bits encompass at least the

input MAPPED bits, dealing with MAPPED bits is no more complicated than

for the 1-to-2 adaptation algorithm. (Recall that the 1-to-2 required the

same constraint.)

Unfortunately, this combination means that we cannot store each entry

contiguously in our “three entries in four cells” configuration. There is sim-

204 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

ply not enough space between each MAPPED bit. Thus, every fourth cell

contains parts of the entries in the previous three. (See Figure 10.4.)

10.4.2 Algorithm changes for 3-in-4 ADD

Updating the Cleary table ADD algorithm to work with this 3-in-4 scheme

presents a challenge in terms of addressing entries. Consider adding the

first element to the table. From its home address, h, the position of the

MAPPED bit is easy to compute. We also need a preferred location, which

needs to be roughly the i = 3h/4th entry, but computing the bit position of

the ith entry is tricky because we essentially need to undo what we just did,

because we need to relate every three entries with the group of four “cells”

that contain it.

I find the following a simpler approach to the entry addressing problem:

entry locations are the same as “cell” and home addresses, but some ad-

dresses are invalid as entry locations. In particular, every fourth address,

ending in bits “11,” is invalid as an entry location. To make this work, we

just have to hook in to (1) computing the preferred location from a home

address, (2) each time we compute the “next” entry, and (3) each time we

compute the “previous” entry. For (1), home addresses that are also valid

entry locations map to themselves; those ending in “11” map to the respec-

tive one ending in “10.” For (2) and (3), we just have to skip the “11” cases.

We can actually do each of these with simple ALU operations, as these macro

definitions from my 3SPIN implementation show:

#define 3IN4_ADDR_PREF_LOC(addr) \

((addr) - (((addr) & 1) & (((addr) & 2) >> 1)))

#define NEXT_3IN4_LOC(loc) \

((loc) + 1 + (((loc) >> 1) & 1))

#define PREV_3IN4_LOC(loc) \

((loc) - 1 - ((((loc) - 1) >> 1) & 1))

10.4. 2-TO-3 AND 3-TO-4 ADAPTATION 205

10.4.3 Algorithm changes for 2-to-3 and 3-to-4

adaptation

Adapting from a standard Cleary table to a 3-in-4 Cleary table (2-to-3 adap-

tation) has the same complications as its ADD algorithm and a little more. If

we ignore for the moment the extra entry pieces in every fourth cell and sup-

pose we just have to zero out those bits, the adaptation is very much like the

1-to-2. The memory for each cell in the input configuration encompasses the

memory for at least one usable cell in the output configuration, and a home

address or preferred location in that input cell maps to an output home ad-

dress or preferred location in the same piece of memory. Thus, ignoring the

extra entry pieces, the only thing different from the 1-to-2 adaptation is the

preferred location computation and location increment and decrement.

The extra pieces of entry in every fourth cell cannot be written directly

by following a closer-first order, but we only have to remember up to two

uncommitted pseudo-cells of partial entries during the traversal. Process-

ing of the last subsequence might have ended with the first of an input pair

(middle of an output four-“cell” group), with a partial entry that cannot yet

be written, and the pivot of the current subsequence might also be the first

of an input pair. In this case, we have to delay writing those “fourth cell”

partial entries until the corresponding input cell has been processed (“vis-

ited”). Since this extra storage is only a constant amount, the computational

complexity of the adaptation algorithm is not affected.

Adapting from the 3-in-4 Cleary table to a standard Cleary table (3-to-4

adaptation) would seem simple, but it is actually somewhat tricky. It seems

simple because if you zero out the “extra” entry information, contained in

every fourth “cell”, we have an almost valid Cleary table in the output config-

uration 1 What makes it tricky is that a quarter of the input entries will have a

new preferred location in the output configuration; specifically, those whose

1It would not satisfy Invariant 9.2, and could also have repeated entries that should be
coalesced.

206 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

preferred location was not equal to their home address (those whose home

address ends in binary “11”) have a new preferred location, equal to their

home address. This means we could have a pivot entry (see Lemma 10.3)

whose home address ends in “11” but is at its preferred location ending in

“10” and needs to be moved during adaptation. Adaptation is easiest if the

new memory area for each pivot is contained in the memory area it cur-

rently occupies, as in 1-to-2 adaptation. 3-to-4 adaptation has the next best

thing, however: upon processing each pivot, the new memory area for it

is allowed to be overwritten. This is because we can throw away the “ex-

tra” entry information contained in every fourth cell as soon as we know

we won’t be confused by a location appearing unoccupied, in case the only

non-zero data was in the extra information. That is not a problem visiting

right-to-left from the pivot because we know all those cells are occupied; it is

not a problem visiting left-to-right because we would only need to overwrite

a cell with extra entries after visiting the previous three.

As in every previous adaptation routine, we are throwing away entry in-

formation and might need to coalesce entries that are no longer distinct, not

just for compactness, but also to ensure my hack to eliminate OCCUPIED bits

does not lead to violation of Invariant 9.2, by throwing away the only non-

zero information contained in an occupied cell (and not taking corrective

action, coalescing).

10.5 Post-adaptation access times

Based on how my adaptation algorithm arranges runs and empty cells in

the resulting Cleary table, I formulated a hypothesis that access times for

the resulting table should be better than if we had added all the elements

to a table of that configuration to begin with. Tests indicate my hypothesis

is correct, probably because adaptation lays out runs in a way that seems

to leave empty cells interspersed more regularly than we would otherwise

10.5. POST-ADAPTATION ACCESS TIMES 207

Index (bin)

Change
Mapped

Data entry

00 1101 10

4 bits/cell

Values to represent: 10001111
10010101
10011001
11010110

w
ith

 8
 b

its
/c

el
l

A
dd

 to
 ta

bl
e

with 4 bits/cell
Add directly to table

Then adapt to

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

only in 8 bits/cell table

010101 010110011001001111

1011100110111001

Figure 10.5: Comparison of Cleary table layout after adaptation and layout
with no adaptation. This shows how using different algorithms I have pre-
sented can result in different layouts for the runs in a Cleary table. In particu-
lar, adapting from a Cleary table with fewer entry locations seems to result in
shorter spans of occupied cells.

expect.

Recall that even if we satisfy all three structural invariants of a Cleary

table, there are usually many ways to lay out the runs in the cells and still

satisfy the invariants. Consider the two Cleary tables at the bottom of Fig-

ure 10.5. They represent the same set of values in different ways, despite

using the same Cleary table configuration. The table on the right seems to

be better for access times, because the average distance from each occu-

pied cell to the nearest unoccupied cell is only 1.25 rather than 1.5. As the

figure indicates, the right table was the result of adaptation while the left

table was the result of simply adding the same set of values. Examples like

this were the basis of my hypothesis that the post-adaptation structure has

better-than-usual access times.

To test this hypothesis, I instrumented my Cleary table implementation in

3SPIN to time how long it takes to get from one specified number of visited

states to another. For the first data point, I configured it to start with 64 bits

208 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

per cell, adapt to 32-bit 3-in-4 at 90% occupancy, and then adapt to 32-bit

standard at 90% occupancy. Right after that, at 160 million states (67.8%

occupancy), it recorded the starting time, and then at 200 million states

(84.8% occupancy), it recorded the stopping time. The elapsed time was

10.131 seconds. For the second data point, I configured it to start with the

32-bit-per-cell standard Cleary table, and sample times at the same numbers

of states. The elapsed time was 10.445 seconds, about 3% slower. Repeated

trials gave virtually the same result. The model I used was specifically de-

signed to control for differences due to live caches for recently added states;

specifically, no states reached in the search match a previously added state.

I got similar results with a realistic model.

I performed a similar test comparing the result right after 1-to-2 adap-

tation to no adaptation, and the difference was a much smaller, only 0.5%.

This makes sense considering the occupancy must be below 50% after 1-to-2

adaptation.

Do not misinterpret this result; the overall running time was significantly

greater when the model checker had to adapt down to 32 bits rather than

starting at 32 bits. I examine that difference in overall running time in

Chapter 11. Here I am evaluating whether and how access times can vary

among structures with the same current configuration and representing the

same set of values, which might be a surprising result.

To help verify my hypothesized explanation, I added code to compute

the average length of each span of occupied cells, just before recording the

starting time at 67.8% occupancy. If it had just come from 3-to-4 adaptation,

the average length was 4.020 cells. With no adaptation, the average length

was 4.278 cells.

There are two things to take away from this examination of access times

after adaptation. First, the access times one can expect from a post-adapta-

tion Cleary table are slightly better than those from the corresponding table

built without adaptation. Second, it seems possible to alter a Cleary table

10.6. ADAPTATION TO BLOOM FILTER 209

constructed using only the standard algorithms (Chapter 9, no adaptation)

to improve its access times. This second point might be useful in applica-

tions that do not follow the “visited set” usage paradigm, so it is not worth

exploring further in this dissertation.

10.6 Adaptation to Bloom filter

Adapting a Cleary table to a Bloom filter is reasonable and possible when

enough states are reached for the memory per visited state (m/v) to be

small. As described before, the Cleary table is not great when the memory

per visited state is quite small. For instance, there is no known reason for

using a 4-bit-per-cell Cleary table instead of a bit table, since the bit table

can represent the same values in the same space, with O(1) access times and

no susceptibility to overflow (see Section 9.3). Using a bit table for inexact

storage, based on a reduction from Chapter 8, is congruent to a k = 1 Bloom

filter, described in Chapter 6.

10.6.1 k = 1

Adapting to a k = 1 Bloom filter (bit table) is remarkably easy when the cell

size of a standard Cleary table is a power of two. The closer-first traversal

makes this easy, because the bit to set in the new table for an entry is in

the cell at the entry’s home address. Thus, only cells that had their MAPPED

bit set will have bits set in the resulting Bloom filter. If each cell is 2i bits,

then i bits of entry become address bits for the bit table/Bloom filter. See

Figure 10.6 for an example, in which i = 3.

One way to think about this adaptation is that we are adapting to a

Cleary table with zero-bit entries, and because all entries in a “run” are

indistinguishable, there is no need for CHANGE bits. The structure is only

MAPPED bits. This is equivalent to a k = 1 Bloom filter.

In more detail, the algorithm erases relevant MAPPED bits in the imple-

210 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

010000

011000

100000

101000

110000

111000

000000

001000

Values represented: 000101001
000101100
011110101

100010101
100111011
101110010
111011011

100001110

bits lost in adaptation

Index (bin) 000 011 100 101 110 111001 010

Data entry

Change
Mapped

Adapting from 8 bits / cell (6 data + 2 meta) to k=1 Bloom filter ...

001110 010101110101 111011 110010 011011101100101001

Figure 10.6: A simple “before and after” example of adapting a Cleary table to
a k = 1 Bloom filter. Notice that the total memory bits, 64, is the same before
and after adaptation. The input table is the same as in Figure 10.1, and the
outputs in the two figures represent the same set of values.

mentation of preVisitHome. In visit{RightLeaning,Pivot,LeftLeaning},

it erases CHANGE and entry bits in the current cell and then writes the Bloom

filter bit to the proper location, which is safe to write to. (Code for this al-

gorithm is not shown.)

10.6.2 Hash-reusing k = 2

Adapting to a special k = 2 Bloom filter is also possible, and is usually more

attractive than adapting to a k = 1 Bloom filter. The k = 1 Bloom filter is

rarely the ideal Bloom filter configuration for a model checker even when

the state space is intractably large, because the search usually starves for

new states before reaching the v/m ratio for which k = 1 is best. The design

10.6. ADAPTATION TO BLOOM FILTER 211

I use here is a natural generalization of what I described in [26].

Unless we are adapting from a Cleary table with very large cells, we do

not have enough hash information from the original elements to construct

a standard k = 2 Bloom filter. Most typically, we would be adapting from

an 8-bit-per-cell Cleary table, which represents hash values that are three

bits larger than an address in the resulting Bloom filter (six entry bits per

cell, minus three new address bits per cell, because addressing bits instead

of bytes results in 23 = 8 times as many addresses). Another way to see

this is in the three bits “thrown away” when converting to a k = 1 Bloom

filter in Figure 10.6. This is the only additional hash information available

to the newly-formed Bloom filter. We cannot recover any more information

about the input elements unless we dramatically change the conditions of

adaptation, such as recreating the structure from disk, which would be slow.

There is another problem with a standard k = 2 Bloom filter. Bloom fil-

ters are most accurate when there is no locality in the indices for an element.

Ideally, the location of the second index should be random with respect to

the location of the first index. Independent positioning of the second index is

a problem for adaptation, however, because it breaks the locality needed for

the adaptation to be confined to a closer-first traversal using O(1) auxiliary

space.

These two problems, the shortage of hash information and the need for

locality in indexes, are actually serendipitous. My hash-reusing Bloom filter

(Section 6.4.4) is the best known way to deal with limited hash information,

and it makes indices local to each other. This was one of the strange con-

clusions of how best to deal with limited hash information in a Bloom filter.

Thus, we use the hash-reusing Bloom filter for adapting from a Cleary table,

when we want k = 2. All the accuracy analysis of that design (Section 6.4.4)

is applicable here.

In more detail, when adapting from a 2j-bit-per-cell Cleary table to our

special k = 2 Bloom filter, the first index is computed as for the k = 1 adap-

212 CHAPTER 10. DYNAMIC ADAPTATION OF CLEARY TABLES

tation, and the second is computed by replacing the last j bits of that index

with the next j bits of available hash information and adding 2j. By adding

2j (or, equivalently, adding 1 to the part not replaced), we are essentially

placing the second index randomly within the next cell in the input table.

For an 8-bit-per-cell Cleary table, for example, the second index is in the

next byte. Note that at the end of the table (highest index, “right-most”),

the second index should either wrap around to the first cell or occupy an

extra cell beyond the end of the table. I use the latter in 3SPIN, by keeping

one extra allocated cell (byte) in reserve for use when adapting to a k = 2

Bloom filter.

This design keeps the adaptation procedure from getting too compli-

cated. Its basic difference from the k = 1 adaptation procedure is that

the k = 2 adaptation keeps track of two input cells worth of uncommit-

ted Bloom filter data, which is Bloom filter data that will by copied into

the memory occupied by unvisited cells. (Recall that the 2-to-3 adaptation

required tracking uncommitted data.) One contains the uncommitted data

from processing the last Lemma 10.3 subsequence, and the other contains

the uncommitted data from processing the pivot. Note that we only need

one of those after all right-leaning entries in the current subsequence have

been visited, because at that point we can commit the data left over from

the previous subsequence. In my implementation in 3SPIN, I found it more

convenient to have three variables for uncommitted Bloom filter data. In

either case, the tracked data is O(1) size in the RAM model [17].

10.7 Summary

In this chapter I have shown how the representation of the Cleary table

allows for fast, in-place adaptation to accommodate more elements. I have

proven properties of Cleary tables that enable a “closer-first” traversal to

perform this adaptation using O(1) auxiliary space.

10.7. SUMMARY 213

I validate the performance and practicality of these algorithms in Chap-

ter 11, in which I put them together into an adaptive storage solution with

unmatched dynamic flexibility.

CHAPTER 11

Adaptive storage scheme

Contribution: Here I describe a scheme for state storage with an unprece-

dented combination of dynamic flexibility, speed, and accuracy. In particular,

it is the first approach that does not assume any prior information about the

state space size in order to be near the best possible accuracy and speed in

all practical cases. The scheme is based on Cleary tables (Chapter 9) and

Bloom filters (Chapter 6) and my algorithms for quickly adapting from con-

figuration to configuration.

We introduced a basic version of the scheme in a SPIN Workshop pa-

per [26], which focused on practical aspects. Here I refer to that basic ver-

sion as the “fast” variant, because it is among the fastest known approaches

to over-approximate state storage. Here I also describe the “accurate” vari-

ant, which uses the 3-in-4 Cleary table to substantially improve worst-case

competitive accuracy, at the cost of higher code complexity and a little time.

The theoretical design of the scheme allows it to be near optimal accu-

racy in all practical cases. I show that the “accurate” variant is at least as

accurate as is the information-theoretic optimal for half as much memory,

or 40% as much memory for the “fast” variant. My state storage algorithm

could be considered an online algorithm, and my analysis is related to com-

petitive analysis of online algorithms [6, 1]. The detailed analysis is in Sec-

tion 11.1.

215

216 CHAPTER 11. ADAPTIVE STORAGE SCHEME

In practice, to be observably near optimal accuracy and speed, any im-

plementation only needs to use a finite subset of the configurations allowed

by the design, based on the word size. This ensures fast access and adapta-

tion times by keeping cell sizes and hashing requirements to normal levels:

a small, constant number of machine words. This is discussed in detail in

Section 11.2.

A great advantage of my scheme is that it enables the user of an explicit-

state model checker to forget about configuring state storage to get the best

speed and accuracy. Using my scheme—at least by default—ensures that

speed and accuracy are close to the best possible 1.

11.1 Near optimal accuracy by design

Theorem 11.1. Suppose we use m bits of memory to exactly or over-approx-

imately represent visited states in exploration of a state graph, in which each

state is only known to be among u representable possibilities. Suppose also that

m is not close to u (m ≤ u/8) and that m is not trivial in size (m ≥ 216; at

least 8KB). For any number of unique states reached by the search, v, up to

the number of bits of memory available (assume v ≤ m), the expected hash

omissions from a search using the “accurate” storage scheme from Figure 11.1

is no greater than the expected hash omissions from a search using an infor-

mation-theoretic optimal representation in half as much memory (m/2). The

analogue is true for the “fast” variant of the scheme and 40% as much memory

(m/2.5).

Throughout this section, I outline a proof of this theorem, with the as-

sistance of numeric computation. But first, I motivate that this theorem is

useful in practice, and that its key assumptions are reasonable. I also de-

scribe in more detail the storage scheme outlined in Figure 11.1.
1Significantly better performance is likely possible in one or both dimensions by using

heuristic methods, state caching, or out-of-core storage. As discussed in Chapter 1, these
methods are outside the scope of this dissertation.

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 217

Entry
bits How

exact 2i bits per cell, possibly 3-in-4 , enough for exact storage

. (follow pattern from below)

62 = 64 bits per cell - 2 metadata bits per cell
40 = 32 bits per cell - 2 metadata + b(32 - 1)/3c extra (3-in-4)
30 = 32 bits per cell - 2 metadata bits per cell
19 = 16 bits per cell - 2 metadata + b(16 - 1)/3c extra (3-in-4)
14 = 16 bits per cell - 2 metadata bits per cell

8 = 8 bits per cell - 2 metadata + b(8 - 1)/3c extra (3-in-4)
6 = 8 bits per cell - 2 metadata bits per cell

n/a k = 2 Bloom filter (Hash-reusing)

Figure 11.1: Life cycle of Cleary table and Bloom filter configurations in my
adaptive storage design. The structure starts with the configuration on the
top line, where i is the smallest integer to enable exact storage. After reach-
ing 85% occupancy, we adapt the Cleary table to the next smaller entry size
that matches the pattern established by the last several Cleary table configura-
tions, which are listed explicitly. These Cleary tables should implement inexact
storage using even partitioning (Section 8.3) based on a randomized state de-
scriptor. The process continues by adapting as needed to the next configuration
upon attempting to add to a table that has reached 85% occupancy. If needed,
we finally adapt to a k = 2 hash-reusing Bloom filter. This is the final con-
figuration, as it is listed last. The configurations surrounded with boxes are
only present in the “accurate” variant of the storage scheme. Note that in some
rare cases, the starting exact configuration could use 8 bits per cell, i = 3, the
minimum allowed in our scheme; the k = 2 Bloom filter is inherently inexact.
Or in the rare case that m ≥ 0.9u, we recommend a bit table in place of this
scheme entirely.

218 CHAPTER 11. ADAPTIVE STORAGE SCHEME

11.1.1 Utility of the theorem

Theorem 11.1 is useful primarily because it puts a modest price on taking the

guesswork out of configuring non-heuristic data structures for storing visited

states. That modest price is doubling the amount of memory available for

storing visited states. If you pay that price and use our storage scheme, your

searches will always be at least as accurate as they would be if you had con-

tinued trying to pick the most accurate configuration in each case. And if

you are interested in both fast falsification and high-assurance verification,

trying to pick the best configuration in advance is a lot like playing the lot-

tery, because you will eventually lose big in either fast falsification or high

assurance verification.

The scheme is not practical and the theorem is not useful if the hashing

requirements and cell sizes bog down the performance of any implementa-

tion, however. I address these issues in Section 11.2.

Here, I argue that the key assumptions for the inaccuracy bounds of The-

orem 11.1 are reasonable. The first assumption is that “each state is only

known to be among u representable possibilities,” which implies my char-

acterization of an “information-theoretic optimal representation” does not

take advantage of any regularity or predictability in state descriptors. As

explained in Chapter 1, heuristic storage is outside the scope of this disser-

tation. Such techniques are often effective at reducing memory requirements

for exact storage, but usually at a price in execution speed. Perhaps more

importantly, having a concept of optimality is muddled if we cannot assume

each state represents a certain amount of information. Also note that my

design does not preclude bit-packing raw states before storing them; in fact,

the more we can constrain the representable universe with static analysis of

the model, the more reasonable this assumption of Theorem 11.1 is.

The second assumption is that the number of memory bits is not close

to the universe size. Specifically, the theorem is restricted to m ≤ u/8, or

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 219

equivalently, lg u − lgm ≥ 3. That means the full state descriptors cannot

be smaller than the values represented by a standard 8-bit-per-cell Cleary

table, but this should not be a practical limitation, because lg u is typically

many times larger than lgm. Observe that the adaptive storage scheme is

not needed if m ≥ u, because in that statically-determinable case we can

use a bit table (Section 5.2) to represent any subset of U exactly, with ideal

access times. The case of 0 < lg u − lgm < 3 should be rare, but is difficult

to work with. For a Bloom filter, this would mean each value is less than

three bits larger than an index. Our scheme is not terrible in that case,

because hash-reusing is probably the “least bad” option for inexact storage,

but the competitive inaccuracy of the storage scheme can reach about 2.5.

Therefore, this assumption does not change the essence of the theorem.

The third assumption is that the number of memory bits is not too small. I

specifically assume m ≥ 216 (≥ 8KB memory), but this is the arbitrary “large

enough” point at which I compute bounds numerically and generalize to

everything larger analytically. I expect the bounds to hold for much smaller

m as well, but I do not care about those cases. Since Theorem 11.1 is based

on an accuracy metric that is tied to the visited set usage paradigm, and

the point of the scheme is to make best use of constrained memory, I expect

users to be dedicating more than 8KB of memory to a problem that calls for

our technique.

Finally, I assume the number of states seen during the search does not

exceed the number of memory bits available (v ≤ m). For this assumption

to be violated, a search would have to visit enough states for a k = 1 Bloom

filter to have been the best known approach, which means v/m ≥ 0.88 (≈

1.13459−1; see Figure 6.3). Recall that Holzmann’s extensive testing has

shown that even when memory is short, k = 3 is usually more accurate than

k = 2, which is almost always more accurate than k = 1 (see Section 6.3.3).

The reason is that as the false positive rate of the structure gets high, the

search starves for new states in the stack or queue and much of the state

220 CHAPTER 11. ADAPTIVE STORAGE SCHEME

graph is transitively omitted. The worst that happens in the rare case that

this assumption is not met is that the storage scheme is further from optimal

than the bounds in Theorem 11.1, but this is not exactly a fair critique,

because the best known practical approach for this case, the k = 1 Bloom

filter, also diverges from the information-theoretic optimal as v surpasses m.

If we compare the hash-reusing k = 2 Bloom filter of my adaptive storage

scheme to the best known approach in these cases, k = 1, the accuracy is

well within a memory factor of two.

11.1.2 Design

Figure 11.1 shows the data structure configurations used in the full design

of my storage scheme. We shall assume it starts with a Cleary table capable

of representing states exactly and adapts from there to less accurate Cleary

tables, as needed, until it adapts to the hash-reusing k = 2 Bloom filter.

This is probably not the best way to implement the scheme, mostly because

of high hashing requirements, but it should be a fair way of analyzing the

scheme without tying ourselves to a particular problem scale solvable by

today’s machines. Discussion of practical implementation of this scheme is

in Section 11.2.

Let us consider an example. Suppose lg u = 800; thus, it takes 100 bytes

to describe a state. Suppose we have m = 233 bits, or 1 GB, of memory

for state storage. To find the most compact starting configuration that rep-

resents states exactly but is also compatible with our scheme, we can start

with a cell size that is the next power of two higher, and work our way down.

Consider, therefore, cells of 210 = 1024 bits. The represented values would be

(1024−2)+(33−10) = 1045 bits, which is clearly sufficient for exact storage.

The next configuration would be a 3-in-4 Cleary table using 29 = 512 bits per

cell. The represented values would be (512−2)+(33−9)+b(512−1)/3c = 704.

In general, this is not sufficient for exact storage. Thus the starting configu-

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 221

ration uses a standard Cleary table with 1024 bits per cell.

The 512-bit-per-cell 3-in-4 Cleary table would be the next configuration

in the example, in the case of the first structure reaching 85% occupancy.

Only 704 bits of the original 800 (padded to 1045) would remain after the

first adaptation. Ignoring for now the practical implications, we assume

the state vector has been randomized by an ideal randomization function

(one-to-one hash function), such that any prefix of the bits has as much

information as possible about the original state. If in this example there are

750 bits of information (entropy) in the original 800-bit state, we assume the

704-bit prefix represents 704 bits of that. If the original only contained 100,

we assume the 704-bit prefix contains all 100, as an ideal randomization

would guarantee. (See Section 11.2 for practical considerations.)

If we reach the 8-bit-per-cell standard Cleary table and reach 85% occu-

pancy on it, the (8 − 2) + (33 − 3) = 36 bit values represented are used to

convert to a k = 2 hash-reusing Bloom filter. This final adaptation is unique

because we are converting to an inherently inexact structure. Information is

lost in the conversion, but not in an explicit way; we need all 36 bits from

the values in the previous structure to build the Bloom filter, but we cannot

reverse-engineer the precise set of 36-bit values that went into creating the

Bloom filter. This indicates information loss, and why the Bloom filter is

less accurate than the 8-bit-per-cell Cleary table. The Bloom filter’s lower

accuracy, however, comes with the ability to accommodate more elements.

In fact, it cannot overflow in the same sense that a Cleary table can, because

any Bloom filter can represent the entire universe of elements, by having all

its bits set to “1”.

11.1.3 Exact storage case

I first demonstrate the portion of Theorem 11.1 relating to exact storage.

This requires showing that for any allowed combination of m, u, and v, my

222 CHAPTER 11. ADAPTIVE STORAGE SCHEME

adaptive storage scheme uses exact storage at least when the competitive in-

accuracy, m/m̆v,u,0, is greater than or equal to 2 (or 2.5 for the fast variant).

(See Definition 3.4 and Corollary 4.4.) This rules out any case of my scheme

using inexact storage when the bound requires exact storage.

For a given m and u, the lowest competitive inaccuracy (highest competi-

tive accuracy) for exact storage will always occur right before we adapt from

exact storage to inexact storage. Assuming this lowest m/m̆v,u,0 is less than

or equal to 2 (or 2.5), we satisfy the exact storage portion of Theorem 11.1.

Figure 11.2 shows numeric computation of the lowest m/m̆v,u,0 for var-

ious m and u. Observe that the data points for the accurate variant stay

below 2.0 and the fast variant below 2.5.

To compute lower bounds for m̆v,u,0, I use some code I wrote to compute

m̆v,u,f based on Theorem 4.2:

lg

(
u
v

)(
w
v

) = lg
(u)v
(w)v

=
ln(u)v − ln(w)v

ln 2

The notation (u)v is the falling factorial or Pochhammer symbol, and I have

written a routine to compute the natural logs of these, with iteration for

small numbers and with asymptotic approximations for large numbers. The

approximations are based on well-known approximations of the natural log-

arithm of the gamma function. Care must be taken to avoid the limitations

of floating point arithmetic, especially in representing real numbers close to

1.0. See Figure 6.1 for further validation of these computations.

Focusing on Figure 11.2 again, I use lg u− lgm for the X axis rather than

u so that the graph has little dependency on the magnitude of m. Observe

that there is very little difference between the results for lgm = 16 (8 KB)

and lgm = 33 (1 GB), except when u � m gets large. There is an inter-

esting explanation for the jagged lines and generally lower memory factors

associated with the lgm = 16 case. Toward the right side of the graph, lg u is

becoming a sizeable proportion of m = 216, which means the number of cells

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 223

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 10 100 1000

M
em

or
y

fa
ct

or
fr

om
op

ti
m

al

lg u− lgm

lgm = 16 Fast variant
lgm = 16 Accurate variant
lgm = 33 Fast variant
lgm = 33 Accurate variant

Figure 11.2: Competitive inaccuracy of exact storage in variants of adaptive
storage scheme. Right before converting from exact storage to inexact, the adap-
tive storage scheme is using some factor more memory than is theoretically pos-
sible for the v and u. These factors are graphed, based on a vast range for
lg u− lgm, which is used instead of lg u so that the graph will be largely inde-
pendent of the scale of m. (Notice there is not much difference between m = 16,
the lines, and m = 33, the points.) The optimal is based on the maximum v

before adaptation for each case, since this is most relevant to Theorem 11.1.
The factor is below 2.0 for lg u − lgm much smaller than Theorem 11.1 as-
sumes, which is lg u− lgm ≥ 3. See referencing text for more discussion on the
interpretation of this graph.

224 CHAPTER 11. ADAPTIVE STORAGE SCHEME

in the table is getting to be small. In that case, the occupancy is actually well

above 85% the first time it reaches at least 85%; thus it is making better use

of memory upon adaptation, and we can trust these bounds to hold even if

the number of cells is very small. The spikes in the lgm = 16 indicate where

the maximum v for before adaptation goes down by one, thus creating an

instant loss of memory utilization and competitive accuracy.

The results in Figure 11.2 need not satisfy the appropriate bounds for

lg u − lgm smaller than what is show, because the minimum relevant value

for lg u− lgm is approximately 0.152, based on the m ≤ 0.9u assumption in

Theorem 11.1.

The results in Figure 11.2 continue to satisfy the appropriate bounds for

lg u− lgm beyond what is shown (about 8000, or about a 1 KB state descrip-

tor). In this case, an asymptotic argument is easy to formulate, because as

lg u − lgm approaches ∞, the competitive accuracy (m̆v,u,0/m) approaches

the proportion of the Cleary table memory that is entry bits from actual

element descriptors (call it j/m). (j does not include bits for metadata, un-

occupied cells, or wasted/unused space in occupied cells.) Both m̆v,u,0 and

j are v(lg u − lg v + O(1)) (see Equation 4.6), where the O(1) is insignifi-

cant as lg u − lgm → ∞ because an assumption of Theorem 11.1 ensures

lg u− lg v > lg u− lgm.

Now, we just have to verify that the adaptive storage scheme ensures

that j/m ≥ 0.5 (or 0.4 for the fast variant) at the point when adapting

from exact to inexact. In the worst case, the entry size required for exact

storage will be slightly larger than a size allowed by the design. (See the

pattern established in Figure 11.1.) The two cases are (for some i) 2i + ε

and 4
3
2i + ε bits per cell, where ε is a negligibly small value. In each case, we

are forced to go with the configuration with the next larger entry size, 4
3
2i

in place of 2i + ε and 2i+1 + ε in place of 4
3
2i + ε. This means we are using

as little as 3/4ths or 2/3rds (respectively) of the entry bits for actual data

from the element. (The rest is wasted due to the constraints of my scheme.)

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 225

On top of that, as little as 85% of cells are occupied. Thus, asymptotically,

j/m ≥ 0.85 · 2/3 = 0.56, for the accurate variant. For the fast variant, entries

only double in size, so j/m ≥ 0.85 · 1/2 = 0.425. That justifies that the

appropriate bounds extend indefinitely to the right in Figure 11.2. (Look for

the accurate variant staying below 0.567−1 = 1.76 and the fast variant below

0.425−1 = 2.35 in Figure 11.2.)

The results in Figure 11.2, shown for m = 216 and m = 233, also gener-

alize to arbitrarily large m. If we double m, we should also double u, so as

not to infringe upon our assumptions and to keep lg u− lgm the same. Note

that the cell size stays the same because the additional state descriptor bit is

covered by an additional address bit in the Cleary table. Doubling m and u

almost exactly doubles the memory lower bound (using Corollary 4.4):

2 lg
(
u
v

)
= 2

v−1∑
i=0

lg
u− i
v − i

≈
2v−1∑
i=0

lg
u− i/2
v − i/2

= lg
(

2u
2v

)
Thus, the competitive (in)accuracy is virtually unaffected by doubling m and

u.

11.1.4 Inexact storage case

The remaining part of Theorem 11.1 is the case of inexact (over-approx-

imate) storage. This requires showing that for any legal m, u, and v for

which my adaptive storage scheme uses inexact storage, the expected num-

ber of hash omissions is less than the information-theoretic optimal for half

as much memory (or 40% as much memory, for the fast variant).

I start with numerical computation that shows the bounds are satisfied

in many important cases, as shown in Figure 11.3. I use m of adequate size

for Theorem 11.1, m = 216. u is sufficiently large that inexact storage is

used well before adapting to the configuration using 64 bits per cell, such as

u = 2150. v ranges to consider every configuration after 64 bits per cell, up

to the maximum v considered by Theorem 11.1: 1
80
≤ v

m
≤ 1.

226 CHAPTER 11. ADAPTIVE STORAGE SCHEME

1e-20

1e-15

1e-10

1e-05

1

1020304050607080Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 50% Mem
Lower bound, 40% Mem

Accurate variant
Fast variant

0.001

0.01

0.1

1

2468101214Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 50% Mem
Lower bound, 40% Mem
Accurate variant
Fast variant

Figure 11.3: Comparison of predicted inaccuracy of adaptive storage variants
with information-theoretic lower bounds. Lower is better. The lower graph is
a zoom of the top-right corner of the upper graph. These show that within
this range, the accurate variant stays below the information-theoretic bound
for 50% as much memory and the fast variant stays below the bound for 40%
as much memory. These expected inaccuracies are computed from formulas as
described in referencing text, using m = 216 and u = 2150, though the results
should not change substantively for larger cases.

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 227

Recall that there are two forms of inexact storage used by my storage

scheme: Cleary tables, using either reduction from Chapter 8, and the hash-

reusing k = 2 Bloom filter (Section 6.4.4). To predict hash omissions, we use

Equation 3.9, which expects the expected false positive rates for each num-

ber of visited states up to the maximum. For the Cleary table, I use the false

positive rate formula for “even” partitioning, in Equation 8.11, using the ex-

pected value of n based on the history of false positive rates. For the Bloom

filter, I use the formula from my analysis of hash-reusing, Equation 6.15. For

the information-theoretic lower bound, I invert the memory lower bound

from Theorem 4.2 in the naive fashion, by using a binary search in each

case to find the largest w that the bound precludes as representable; using

f = w−v
u−v , this gives a lower bound on the false positive rates. These analyses

are the basis for the numerical results in Figure 11.3.

It is interesting to note that the bounds do not quite hold for the false

positive rates that underlie the expected hash omission numbers. See Fig-

ure 11.4. Increasing the maximum occupancy a little should satisfy the

bounds, however.

The first analytical generalization of the computed expected omissions in

Figure 11.3 is that they are “scale independent,” in the sense that if we scale

up u, m, and v by some constant, such as two, they do not change substan-

tively. The accuracies in Figure 11.3 are stated in terms of the expected pro-

portion of states hash-omitted (ô/v), because it is scale-independent if the

underlying solution is “asymptotically compact” (see Section 4.4), unlike the

expected hash omissions (ô). The notion of “asymptotically compact” was

derived from the information-theoretic lower bound, so we can trust its re-

sults to be scale-independent. By the approximation of Equation 6.5, Bloom

filters are asymptotically compact, and it is easy to confirm that is also true

for hash-reusing Bloom filters. The Cleary tables for inexact storage are also

asymptotically compact, using an argument related to that of the Bloom fil-

ter. Doubling u, m, and v results in twice as many cells of the same size;

228 CHAPTER 11. ADAPTIVE STORAGE SCHEME

1e-05

0.0001

0.001

0.01

0.1

1

51015202530

Fa
ls

e
po

si
ti

ve
ra

te

Memory bits per state seen (m/v)

Lower bound, 100% Mem
Lower bound, 50% Mem
Lower bound, 40% Mem
Accurate variant
Fast variant

Figure 11.4: Comparison of predicted false positive rates of adaptive storage
variants with information-theoretic lower bounds. This is like Figure 11.3, ex-
cept intended to show that the same bounds do not quite hold for the individual
false positive rates that contribute to the expected hash omissions.

because of the extra address bit, the number of partitions p doubles. By

Equation 8.3, which is like k = 1 Bloom filter analysis, the false positive rate

is essentially unaffected by scaling these variables together.

I have also confirmed the generalization of scaling u, m, and v simul-

taneously by generating the graph in Figure 11.3 for various scaled values,

with visually identical results.

Next I describe how the bounds continue to be satisfied indefinitely to the

left in Figure 11.3, meaning for m/v > 80, or equivalently, v/m < 1
80

, but for

now I will assume that u is practically infinite. Now, from a m/v that calls

for Cleary table storage, suppose we double m but keep v the same. This

calls for Cleary table storage with the same number of cells but twice the

size, which is always allowed by the pattern of the scheme, as established

in Figure 11.1. The expected occupancy of the Cleary table, α, should be

approximately the same in both cases. Thus, by using 2m memory instead

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 229

of m, we have added αm/v bits to each entry in the Cleary table, cutting

the false positive rate by a factor of 2αm/v. Based on our assumption that u

is practically infinite, we can use the simpler lower bound, m̆v,∞,f ≥ lg f−v,

from Corollary 4.3. Equivalently,

2m̆v,∞,f/v ≥ f−1

Thus, the false positive rate for the optimal is cut by a factor of 2m/v by

doubling memory, or in the case of the optimal for α as much memory, 2αm/v.

Thus, generalizing the results to m/v > 80 is a matter of ensuring that the

occupancy α is greater than the competitive accuracy bounds claimed by

Theorem 11.1, and I verified a nearly identical property in demonstrating

the j/m ≥ 0.5 (or 0.4) properties for exact storage.

Finally, I generalize the bound for any allowed m/v to any allowed u.

Combined with scaling all three together, this completes the generalization

of inexact storage bounds. For this generalization, I appeal to Corollary 4.7,

which says that unless exact storage is possible, the difference between the

real lower bound and the one assuming u is practically infinite comes down

to just a constant number of bits per added element. Such a difference is less

significant when lg u− lgm is large, making inexact storage extend to large

m/v. Thus, any problems with various u should appear when lg u − lgm is

near the minimum permitted by Theorem 11.1, lg u− lgm = 3.

I have tested the bounds for various u with lgm ≈ 16, and they clearly

hold if using “even” partitioning (as specified in Figure 11.1). Interestingly,

if we were to use “balls and bins” partitioning (Section 8.2), the bounds

would not quite hold, unless we increase the maximum occupancy in the

scheme from 85% to about 87%. See the graphs in Figure 11.5, which show

the bounds for 100% memory and 50% memory as solid lines, the accurate

variant of the adaptive storage scheme as a fine-dotted line, and the accurate

variant modified to use “balls and bins” partitioning as the dash-dotted line.

230 CHAPTER 11. ADAPTIVE STORAGE SCHEME

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 3 + ε

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 5

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 5 + ε

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 10

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

5101520

lg u− lgm = 10 + ε

Figure 11.5: Demonstration of inaccuracy bounds on adaptive storage for
various universe sizes. These have the same axes as Figure 11.3; the X axis is
memory bits per state seen (m/v) and the Y axis is the expected proportion of
states hash-omitted (o/v). The solid lines are the bounds for 100% and 50%
as much memory. The fine-dotted line is the accurate variant of the adaptive
storage scheme, using “even” partitioning for inexact storage. The dash-dotted
line is the same except with “balls & bins” partitioning, which is worse in some
rare cases like these.

11.1. NEAR OPTIMAL ACCURACY BY DESIGN 231

The first interesting case, shown in Figure 11.5, is exactly lg u− lgm = 3.

In that case, no inexact Cleary table configurations are used, so the differ-

ence in partitioning methods is not even exercised. Next is lg u−lgm = 3+ε,

which is the most accuracy-demanding configuration to use the standard 8-

bit-per-cell Cleary table for inexact storage. Even partitioning shows its ad-

vantage because the descriptors are only barely too large for the standard

8-bit-per-cell Cleary table to represent them exactly. lg u − lgm = 5 is just

the right size for the 3-in-4 Cleary table with 8 bits per “cell” to represent

exactly, so when two bits of each descriptor are thrown away for the stan-

dard 8-bit-per-cell, there is not a huge difference between the partitioning

methods.

lg u− lgm = 5 + ε is the case in which using “balls and bins” partitioning

would violate the competitive inaccuracy bound of 2.0; the dash-dotted line

in the graph for this case in Figure 11.5 pokes above the bound. Using

“even” partitioning is not even close to the bound in this case. The rest of

the graphs are not so interesting, as they fill out to look like Figure 11.3,

staying below the claimed bound for any acceptable u.

11.1.5 Final notes on the theoretical bound

Though well short of a full proof, my defense of Theorem 11.1 should be

compelling and informative. Basically, I have shown the ways in which the

storage scheme is fundamentally scalable with the generalizations of the

numerical results. In the next section, I address certain speed concerns, that

are not scalable if the full design is used.

The accuracy bound in Theorem 11.1 is essentially a practical conception

of dynamic flexibility, which in Definition 3.5 is not limited to “all practical

cases.” The adaptive storage scheme as described in Figure 11.1 is optimized

for such practical concerns. If we wanted to have the best known dynamic

flexibility according to Definition 3.5, we would end with a k = 1 Bloom

232 CHAPTER 11. ADAPTIVE STORAGE SCHEME

filter instead of the hash-reusing k = 2. For example, the “accurate” variant

of adaptive state storage is more dynamically flexible than most other data

structure configurations considered in this dissertation, but its dynamic flex-

ibility is technically incomparable with the standard k = 2 and k = 1 Bloom

filters. Though typically worse in practical cases, ending with a k = 1 Bloom

filter would have better dynamic flexibility than all other data structure con-

figurations considered, under some reasonable assumptions. Details of these

arguments did not make it into this dissertation. Instead, Theorem 11.1 cap-

tures a notion of dynamic flexibility that is more practical for problems of

visited set storage.

11.2 Near optimal speed and accuracy in

practice

The full adaptive storage scheme in Figure 11.1 can be too slow to be prac-

tical, but for a given machine, we can implement a fast subset of the design

with accuracy practically indistinguishable from the full design. Basically, if

the largest (starting) cell size is the size of just one or two machine words,

the probability of that causing more actual hash omissions than the full de-

sign is one in millions or billions.

Exact storage with Cleary tables also has low hashing requirements, so

it would be possible also to include that case in a practical implementation,

but work on that case was not completed in time for writing.

11.2.1 Practical problems with full design

There are a few practical problems with the full design of my adaptive stor-

age scheme. The first has to do with hashing. The scheme assumes that

the entire state descriptor is hashed with a truly randomizing bijective hash

function; if the state descriptor is large, this is a ridiculous assumption. One

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 233

might think we could use a standard block cipher to randomize a long de-

scriptor, but it only randomizes a block at a time, with limited “memory” of

the past. Thus, only a limited summary of the information about the first

half of the descriptor would be “mixed in” with the second half.

A more practical assumption is that we can quickly compute a hash of

the descriptor equal to three machine words in length. This is reasonable

because Jenkins hash functions, known for a great combination of speed

and quality [52], are based on mixing pieces of input into a three-word

state. (I have before validated using the full state of a Jenkins hash function

as the hash value [24, Section 4].) And if the static size of the descriptor

is small enough (three words or less), it should be reasonable to compute a

one-to-one hash. Jenkins functions are based on bijective transformations of

the internal state, and it should be easy to restrict that to a given size.

The second problem with the full design is that access and adaptation

require shifting around and copying descriptors that are potentially rather

large. In that case, some adaptation operations would not satisfy the pre-

condition for O(1) auxiliary storage in Corollary 10.7, though requiring a

few descriptors worth of working space is not in itself a big practical con-

cern. More concerning is the cost of shifting around large cell entries when

adding elements to a heavily occupied table. Restricting Cleary table cells

to a small number of machine words keeps required auxiliary storage and

access times low.

The final problem with the full design is that it does not handle the case

of infinite universe in a reasonable way. Because of the limitations in analyz-

ing exact storage requirements (see Section 4.5), my bounds assume exact

storage from an infinite universe is not possible in finite space, so the scheme

would require us to start out with one cell almost the size of the whole struc-

ture and split it from there as we add more elements. Clearly, starting with

some reasonable cell size is a good choice in this case.

234 CHAPTER 11. ADAPTIVE STORAGE SCHEME

11.2.2 Practical implementation

The natural way to deal with these shortcomings is to start with a config-

uration whose accuracy is practically indistinguishable from that of the full

design, but whose cells are of reasonable size. Luckily, the absolute accuracy

of an “asymptotically compact” structure improves exponentially with addi-

tional memory per added element. More specifically, the following theorem

guides implementation of the scheme such that its accuracy is not practically

distinguishable from the full design:

Theorem 11.2. Let ṁ be the maximum number of bits of memory addressable

by an implementation of inexact Cleary table storage. If the cell size is at least

q + 2 + lg ṁ bits and the number of visited states is not too many to overflow

the structure, the probability of any omissions is no more than 2−q.

Proof Note that in the formula for the prior probability of no omissions

(Equation 3.11), we makes the assumption at each step that the affecting

additions n equals the unique additions v. Thus, the false positive rate using

“even” partitioning (Equation 8.11) is no higher than that using “balls and

bins” partitioning, which by Equation 8.4 is n/p, where p is the number

of partitions of the universe. To get the probability of any omissions, we

subtract from one the probability of no omissions, from Equation 3.11, and

use the n = v assumption:

P (o > 0) = 1−
n−1∏
i=0

1− i

p

Using some properties of arithmetic,

P (o > 0) ≤
n−1∑
i=0

i

p
=

(n− 1)2 + (n− 1)

2p
≤ n2

p

From here, we know n ≤ 2ṁ from the assumption that the number of visited

states is not too many to overflow the structure, and we know p ≥ n2ṁ+q

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 235

based on there being at least n home addresses and at least ṁ+ q entry bits

per cell. Thus,

P (o > 0) ≤ n2ṁ

n2ṁ+q
= 2−q.

�

Using an implementation on a machine with byte-addressing (23 = 8 bits

per byte), this corollary is more directly useful:

Corollary 11.3. Using an implementation of inexact Cleary table storage for

an architecture with word size b bits, able to address up to 2b bytes of memory,

the probability of any omissions is no more than 2−q if the cell size is at least

q + 5 + b bits and the number of visited states is not too many to overflow the

structure.

For example, suppose we are using a 32-bit machine, and we can accept

a one in a million chance of any omissions (2−20). We only need cells of

at least 20 + 5 + 32 = 57 bits. Thus, if our starting configuration for the

adaptive storage scheme is 64 bits per cell, our chances of being able to

notice a difference in accuracy, by noticing at least one state was omitted,

is one in millions. In fact, using Theorem 11.2, 64 bits per cell is “one in a

million” good up to 242 bits of memory, or 512 GB. Thus, 64 bits per cell is a

fine upper limit for cell sizes at the time of writing.

In general, for word sizes of at least 32 bits, one or two words is enough

to guarantee that it is practically impossible to observe a loss in accuracy

compared to the full adaptive design, and it allows for fast hashing, access,

and adaptation. A hash value of three words, such as that from a Jenkins-

style function, is sufficient, because one word is enough for the home ad-

dress and two words are enough for entry bits in the cell. And two words is

not an unwieldy size for access or adaptation.

236 CHAPTER 11. ADAPTIVE STORAGE SCHEME

11.2.3 Active state matching

Cell-based structures such as Cleary tables are particularly well-suited for

integration with partial-order reduction (P.O.R.), which has drastically in-

creased the effectiveness of explicit-state verification methods [47, 33]. Adap-

tation complicates that integration, as does the k = 2 hash-reusing Bloom

filter, but the problems are surmountable. The resulting integration is faster

than having separate structures to support P.O.R., and can save a lot of mem-

ory also.

I introduced and validated this integration in the SPIN Workshop paper

that introduced the “fast” variant of my adaptive storage scheme [26]. Here

I describe the same integration.

The typical implementation of P.O.R. requires runtime support in the

form of a “cycle proviso,” which needs to know whether a state is on the DFS

stack [47] or BFS queue [8] (depending on whether depth-first or breadth-

first search is being used). We will refer to this as checking whether the state

is active, or active state matching.

If the visited set is based on cells, one bit with each cell can be used

to indicate whether the state stored in that cell is active. I call this inte-

grated matching of active states. In the adaptive storage scheme, the one

bit per cell for the ACTIVE flag comes from using one less entry bit for each

configuration, so that cell sizes are still powers of two.

Integrated matching is more compact than using a separate structure if

the proportion of visited states that are active reaches a significant level,

and adding random access to the stack or queue of active states would be

expensive. If, for example, less than 1% of visited states are active at a

time, then a separate structure using 64 bits per active state would be more

compact than dedicating a bit for each visited state. However, predicting the

relative proportion of visited states and active states is similarly as difficult

as predicting the number of visited states, and integrated matching is the

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 237

more robust approach, because it cannot overflow. For details, see [26].

Adding random access (“active state matching” for P.O.R.) to the stack

or queue of active states could be expensive or impractical for two reasons.

First, a stack or queue of states can reasonably use out-of-core storage (disk)

because stack and queue operations are adjacent to either the last “add” or

“remove” operation, meaning the access is “linear” or “streaming,” which

disk is optimized for. Thus, if most of the stack is on disk, as with SPIN’s

-DSC option, we cannot add efficient random access to the search stack of

states as it is stored. In fact, not allowing the search stack/queue to spill to

disk impairs robustness of the search, because there has to be a cap on the

number of active states to prevent thrashing.

Second, adding random access to the stack/queue might also be im-

practical because of lossless compression. It is common for adjacent states

to share most of the content of their descriptors. Because access to the

stack/queue is always in a prescribed order, only the differences between

states need to be stored. This can save a lot of memory and/or disk usage

and bandwidth, but inhibits random matching of states on the stack/queue.

Clearly, without knowledge that can only be acquired through luck or

trial and error, the search needs integrated stack/queue matching and a

search stack or queue that mostly lives on disk in order to be robust.

The details of how active state matching is integrated into my adaptive

storage scheme, including the hash-reusing Bloom filter, are in [26].

11.2.4 Practical speed

The speed of the storage scheme depends on many factors, but typically it is

a little faster than the standard k = 3 bitstate/Bloom filter approach before

the first Cleary table reaches high occupancy, slower for the intermediate

Cleary tables, and faster for the hash-reusing k = 2 Bloom filter. The differ-

ence in speed with standard approaches is often hidden by other overhead

238 CHAPTER 11. ADAPTIVE STORAGE SCHEME

in industrial examples.

Figures 11.6 and 11.7 give us a lot of information about the speed of

the variants of my adaptive storage scheme. The speed of the k = 1 Bloom

filter should be regarded as “practically optimal,” and the speed of the k = 3

Bloom filter is generally recognized as good.

The first thing to notice in Figure 11.6 is that the time for each adaptation

operation is relatively small. These are the places in the graph at which the

number of explored transitions is momentarily flat, and these are marked

with points on the line. Because adaptation is done with essentially stream-

ing access to memory and no hash computation, it is very fast. In these tests,

each adaptation takes between 1% and 2.5% of the running time so far. That

could be higher for models with less overhead or much lower for industrial

models with a lot of overhead, such as in hashing large descriptors. Note

that because the time between adaptations increases exponentially through

the verification process, the total time spent in adaptation never really ex-

ceeds a small factor more than the last adaptation (about 3x for “accurate”

variant and about 2x for “fast” variant).

Next, for Cleary tables, the speed of each lookup depends on the occu-

pancy, as was also shown in Figure 9.4. When sparsely occupied, the speed

of each lookup is noticeably faster than the k = 3 bitstate, which uses three

random memory accesses. As expected with a structure using linear prob-

ing, the access times rise quite significantly as the structure fills to 85%

occupancy, and abruptly return to faster times after adapting, which low-

ers occupancy. The visited set usage paradigm tolerates such rises because

they are are only temporary. Using a smaller maximum such as 65% pre-

dictably mitigates this slowing at a moderate cost in accuracy. Note that the

maximum occupancy before adaptation could be chosen dynamically, so for

example, it could be chosen based on what percentage of time the model

checker (or other program) is spending on Cleary table accesses, allowing

for dynamic balancing of speed versus accuracy.

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 239

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000

St
at

e
tr

an
si

ti
on

s
ex

ec
ut

ed
(b

ill
io

ns
)

Time elapsed (seconds)

Fast variant
Accurate variant

Accurate variant 65% max
k = 3 bitstate
k = 1 bitstate

Figure 11.6: The progress over time in exploring a state graph with differ-
ent storage schemes. Progress is measured by the number of state transitions
executed (graph edges explored). The points on the lines for adaptive storage
delineate the beginning and end of each adaptation, during which no transi-
tions are executed. All the adaptive schemes started with a 64-bit-per-cell table
and ended with the hash-reusing k = 2 Bloom filter. The model is one from
the SPIN distribution, PFTP, scaled up to have an enormous number of states
and 296-byte state descriptors. Each of these runs executed about 13.5 billion
transitions, distinguishing about 6 billion unique states in about 6200 seconds,
except the k = 1 bitstate (Bloom filter) configuration only explored 12.5 billion
transitions and 5.5 billion states, in 5200 seconds. Hash computation, using a
Jenkins hash function, was the same for each configuration. Beyond the bounds
of this graph, the lines continue with the same slope. I used 3SPIN with 2 GB
for visited state storage and limited depth to 20 million. Partial-order reduc-
tions were used, using a chaining hash table to match states on the stack. Tests
were compiled with gcc 4.4.3 (-O3) and run alone on a 64-bit Linux system
with Intel Xeon X5677 CPUs (3.47GHz).

240 CHAPTER 11. ADAPTIVE STORAGE SCHEME

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7

Ti
m

e
pe

r
st

at
e

tr
an

si
ti

on
(µ

s)

State transitions executed (billions)

Fast variant
Accurate variant

k = 3 bitstate
k = 1 bitstate

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7

0 1 2 3 4 5 6 7Ti
m

e
pe

r
st

at
e

tr
an

si
ti

on
(µ

s)

State transitions executed (billions)

Accurate variant 65% max
k = 3 bitstate
k = 1 bitstate

Figure 11.7: The time per state transition over the duration of exploring a
state graph with different storage schemes. These graphs are essentially the
inverse of the derivatives of the curves in Figure 11.6, because it shows the time
per transition rather than total transitions. To avoid clutter, the test using a
different maximum occupancy is in the separate lower graph. The adaptations
occur where the time is briefly enormous; the points are simply at regular inter-
vals to help distinguish curves. To have adaptations line up between the “fast”
and “accurate” variants, the X axis is total transitions rather than elapsed time.
The dips in the “optimal” time, given by the k = 1 Bloom filter, coincide with
drastic changes in search stack depth. Based on profiling and other tests, I
estimate about 0.3 microseconds of overhead per transition: about 0.13 mi-
croseconds on hashing and about 0.17 on other things for transition execution,
invariant checking, and partial-order reduction.

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 241

The hash-reusing k = 2 Bloom filter appears to be essentially as fast as

the k = 1 Bloom filter, which must be because each access is confined to

two adjacent bytes of memory. Thus, only one random access to memory is

required for each access. It is well-known that Bloom filter access times can

be improved by increasing locality of the indices (e.g. [72]), but it comes

with an accuracy cost. In fact, by preceding the hash-reusing Bloom filter

with more accurate Cleary table configurations, we are only using the Bloom

filter when the accuracy impact of index locality is smallest (m/v < 10).

Though in many cases the k = 3 Bloom filter is more accurate than the

adaptive storage scheme, its higher peak competitive accuracy comes at a

cost in dynamic flexibility.

In many cases, the adaptive storage scheme is using the hash-reusing

k = 2 Bloom filter for most of the duration of verification. This is because

adaptation to the Bloom filter happens around v/m = 0.1 and can easily

extend to v/m = 0.4 or higher. In that case, having gone through the slower

Cleary tables has little relative impact on the overall running time. Fig-

ure 11.6 shows less than half of the overall running time for the test, and

all the adaptive storage configurations end up with an average speed faster

than the standard k = 3 Bloom filter configuration.

The adaptive storage scheme is also near “optimal” speed until the first

Cleary table configuration gets to be about half full. This is visible in Fig-

ure 11.7, up to about 1/4 billion transitions. If an error exists in the model, it

is often manifest in multiple places in the state space, meaning it is expected

to be discovered before exploring the majority of the state space. Thus, in

many cases, my adaptive storage scheme will find an error before the first

adaptation, and find it slightly more quickly than the standard k = 3 Bloom

filter configuration.

When the storage scheme is using a Cleary table that is mostly full, then

the speed is not as clearly or consistently “near optimal,” but it has favor-

able scaling properties. First of all, it should be pointed out that others have

242 CHAPTER 11. ADAPTIVE STORAGE SCHEME

shown that only O(1) search is needed from the home address if we enforce

a maximum occupancy less than 100% and have an adequate hash func-

tion [66]. However, an increasingly dominant cost in accessing large data

structures is the cost of random accesses to main memory [53], and because

the Cleary table uses linear probing, only one random access is needed per

operation. Integrating matching of active states for partial-order reduction

accomplishes even more with that one random access.

The low need for random memory accesses led me to hypothesize that

on a system in which multiple CPU cores are active and routinely accessing

main memory, my adaptive storage scheme would have less degraded perfor-

mance than a k = 3 Bloom filter, which uses three random memory accesses.

I confirmed that hypothesis in some detail in [26], and here I briefly show

more support. I re-ran the tests from Figure 11.6 by running eight config-

urations simultaneously on the 8-core machine, as in a “swarm” configura-

tion [46] or a grid or cloud computing environment. The k = 3 Bloom filter

took 10.7% longer. My adaptive scheme took about 8% longer (7.8% longer

for “accurate” variant and 8.2% longer for “fast” variant), which indicates

less degradation in a high-load, parallel environment. (See Section 11.3 for

discussion of parallelization.)

Another important consequence of the scheme’s low reliance on random

memory accesses is that its performance relative to a Bloom filter is worse

when random accesses are cheap, such as when all or most of the data struc-

ture fits in CPU cache. In such cases, the searching and shifting with linear

probing are, relatively speaking, much more expensive. Therefore, do not

be deceived by the speed of the scheme in artificially small experiments.

And small experiments are not realistic, because the user of an explicit-state

model checker should always allow use of as much memory as is readily

available.

On large industrial problems, time spent on other things such as hash

computation should dominate the extra time associated with the adaptive

11.2. NEAR OPTIMAL SPEED AND ACCURACY IN PRACTICE 243

storage scheme during part of its life cycle. My tests have been performed

using a modified version of SPIN, which is known to be the fastest explicit-

state model checking tool. A well-known related tool, Murϕ (or “Mur-

phi”) [76, 78], is usually one to two orders of magnitude slower, in terms of

rate of states or transitions explored. Murϕ’s symmetry reductions, for ex-

ample, reduce state space sizes dramatically, but incur a relatively large per-

state time cost [15]. Even in SPIN, industrial examples tend to take longer

per state than my examples, partially because they tend to have larger state

descriptors, which take more time to hash. See Tables V and VI in [43].

Nevertheless, the inherent time associated with my storage scheme is

not much different from the practical “optimal,” the k = 1 Bloom filter.

Each requires only one random access to main memory. By using the “fast

variant” and/or lowering the maximum occupancy, the actual speed can be

made very close to that optimal. If a little extra time in state storage is

not going to slow the process down much, optimizing the accuracy with the

“accurate” variant and higher maximum occupancies is the natural choice.

11.2.5 Practical accuracy

Using realistic examples, the observed accuracies of the adaptive storage

scheme are consistent with expectation from the formulas. To get close

matches with expectation over a wide range of configurations, we have to

control for transitive omissions, however. When we test a model constructed

to have almost no transitive omissions, the accuracies very closely match ex-

pectation.

As discussed at length in Section 3.6.2, it is hard to predict transitive

omissions from hash omissions; thus, we cannot empirically validate the

precision of our hash omission analysis using a model susceptible to tran-

sitive omissions. Fortunately, it is not hard to construct a model that has

almost no transitive omissions. In particular, if the in-degree of each state

244 CHAPTER 11. ADAPTIVE STORAGE SCHEME

(node) in the state graph is large (such as 10), then for state, each of the

10 predecessors would have to be omitted for it to be transitively omitted.

We can simply make the state of each model an integer from 1 to the de-

sired number of states, and from each, non-deterministically transition to

the states you get by adding each of the first 10 prime numbers, assuming

the result is in the desired range.

Figure 11.8 uses that highly-connected model to validate predicted ac-

curacies against observation, for a range of m/v values. The results are re-

markably close in all the cases visible. Getting statistically significant results

for more accurate cases would require an enormous number of runs. In fact,

in those cases, we are essentially testing the probability of any omissions,

which does not require a contrived model.

In Figure 11.9, I validate that computed probabilities of no omission

for the adaptive storage scheme are accurate for various models of asyn-

chronous systems. These models are more representative of industrial exam-

ples than the previous synthetic model, because they exhibit some transitive

omissions, such as one of the 750 verification runs on Peterson’s algorithm,

which had 36 total omissions instead of the usual 0, 1, or 2. (The probabil-

ity of that many hash omissions is one in billions.) However, if you believe

in the exact storage of the Cleary table, the exact-to-inexact reduction, and

the effectiveness of the 64-bit Jenkins hash function used, these results are

predictable.

11.3 Parallel model checking, etc.

Parallel algorithms usually have the advantage of making use of more com-

puting resources to solve a problem quickly. This has been studied heavily in

the context of explicit-state model checking2, with mixed results. Typically,

the best results are shown when non-storage overhead in the checker is high

2At the time of writing, the Stern/Dill paper [79] has more than one hundred citations.

11.3. PARALLEL MODEL CHECKING, ETC. 245

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

510152025303540

Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v)

Accurate variant
Fast variant

k = 3 bitstate

0.001

0.01

0.1

1

1248

Ex
pe

ct
ed

pr
op

or
ti

on
ha

sh
om

it
te

d
(o
/v

)

Memory bits per state seen (m/v, log scale)

Accurate variant
Fast variant

k = 3 bitstate

Figure 11.8: Empirical validation of predicted hash omissions for the adaptive
storage scheme. The lower graph is essentially a zoom of the top-right of the
upper graph. This is essentially a repeat of Figure 11.3 with empirical results,
represented by the points plotted. The lines are the prediction based on iterating
the formulas to get expected hash omissions. The empirical results use 3SPIN
on a model with a controllable number of states and virtually no transitive
omissions. 20 to 1000 iterations with distinct hash function seeds were aver-
aged for each configuration, depending on what was needed to keep sampling
error low. m = 223 was used for empirical testing, though m = 216 was used to
compute expectations. (The axes are scale-independent for these solutions.)

246 CHAPTER 11. ADAPTIVE STORAGE SCHEME

State Reachable Memory for
Model size states visited set
Leader(8) 340 bytes 4 926 645 18 MB
Peterson(4) 48 bytes 16 819 903 71 MB
Sliding Window(5) 68 bytes 11 876 485 50 MB
Philosophers(9) 156 bytes 1 640 881 5 MB
Phone Switch 92 bytes 32 898 808 145 MB

P (o = 0), P (o = 0),
Model Predicted Observed
Leader(8) 0.4370 0.450 (450 / 1000)
Peterson(4) 0.4323 0.412 (309 / 750)
Sliding Window(5) 0.5392 0.527 (790 / 1500)
Philosophers(9) 0.5897 0.588 (1175 / 2000)
Phone Switch 0.6139 0.635 (254 / 400)

Figure 11.9: Empirical validation of predicted probabilities of no omissions
for the adaptive storage scheme. The empirical results are bold. These models
are standard test models distributed with SPIN [43], tested here using 3SPIN
with adaptive storage (“accurate variant”) on a 64-bit machine. The top table
has information about each model and the configuration used in testing it. The
memory size was chosen to have a probability of full coverage near 50%, to
maximize the entropy in the boolean result of each trial, which is either full
coverage (o = 0) or not. The number of trials was chosen by running trials for
each model for a couple of hours. Partial order reduction was not used, for the
state space sizes to be larger.

and/or partial order reductions are disabled. Here I review some of these

approaches and discuss how applicable my adaptive storage scheme is.

11.3.1 Message-passing parallel

The pioneering technique introduced by Stern and Dill uses a hash function

to divide the state space among the computational nodes [79, 80]. As each

node computes a successor state, it is sent to the owner node for that state,

based on the hash. The original method uses a random hash of the full

descriptor, to divide the state space evenly and non-heuristically, but in that

case, successor states are expected to require transmission to another node.

11.3. PARALLEL MODEL CHECKING, ETC. 247

Lerda and Sisto showed how to reduce communication overhead, using a

partitioning of the state space that heuristically favors keeping transitions

local to a node [60].

My adaptive storage scheme is well-suited to this form of parallel model

checking, because each node has its own private memory space for state

storage. However, this approach is generally considered to incur too much

communication overhead to offer an advantage.

11.3.2 Shared memory parallel

Holzmann and Bosnacki designed an extension of SPIN designed to take

advantage of multicore processors, using a shared-memory algorithm that

supports partial-order reduction [43]. The processing threads need concur-

rent access to the visited set, so it should either support atomic access or

use mutual exclusion at sufficient granularity. However, a small level of re-

visitation of states might be acceptable [43, Section VI.A], and that makes

some data structures such as Bloom filters concurrently accessible without

locking. Laarman, van de Pol, and Weber describe a lock-free hash table

designed for this application [59], but their experimental results are suspect

for not using partial-order reduction; nor do they consider approximate state

storage.

There does not seem to be a way to access Cleary tables concurrently

without locking; the invariants are complicated and span ranges that are

highly dynamic. One strategy for locking in my adaptive state storage scheme

would be to partition the state space using bits from the computed hash and

allocate independent structures of equal size for each partition. This is es-

sentially the same as allocating one big structure with extra “walls” in the

Cleary table that cannot be crossed in a single access. It is not clear how

much overhead the locking would entail compared to other schemes, but

this would be worth investigating.

248 CHAPTER 11. ADAPTIVE STORAGE SCHEME

This shared memory approach is not seen as consistently scalable, in-

cluding by Holzmann [46, Section 1, last par.]. My limited experience has

indicated that multicore verification can easily “upset” partial order reduc-

tion such that orders of magnitude more states are visited.

11.3.3 Independent parallel

An approach more recently promoted by Holzmann is “swarm verification”

[46] in which many single-threaded verifiers are run simultaneously, with

different seeds for search randomization but no communication at run time.

This ensures that communication does not slow down the process or in-

terfere with partial-order reduction. A depth-first search with randomized

successor ordering works well because it seems to give the independent pro-

cesses the best chance of exploring distinct parts of the state space as soon

as possible without communication. Bitstate storage (Bloom filter, k = 2 or

3) with different hash seeds works well.

My adaptive storage scheme is well-suited to this form of parallel model

checking, but the advantages of adaptive storage do not quite match the

use-case that swarm verification was intended for. Swarm verification is

designed for bug hunting in models that are presumed so large that high-

assurance verification is not practical. It is possible that the model might

be unexpectedly tractable to the high-assurance verification possible with

adaptive storage, but even in that case, the fact that multiple runs have likely

covered the vast majority of the state space makes it less important that each

run be highly accurate. The transitive omission problem is simply not as

compelling a justification for an individual search being highly accurate if

many searches are being run in parallel.

Nevertheless, in order to find bugs quickly, the best choice would likely

be the fastest technique that also has decent accuracy. Recall that when the

Cleary table is less than 50% occupied, it is faster than a k = 3 Bloom filter. A

11.3. PARALLEL MODEL CHECKING, ETC. 249

hash-reusing Bloom filter (with index locality) or a k = 1 Bloom filter would

be faster still, though with a likely moderate cost in accuracy. Therefore, if

one were going to run swarm for a pre-determined, short period of time on

machine(s) with a lot of memory, the standard k = 3 Bloom filter is not the

most attractive option, especially since my adaptive storage scheme permits

changing one’s mind about aborting the search and instead allowing it to

continue until starvation. (Without adaptation, Cleary table storage would

often overflow before search starvation.)

Also recall that storage schemes that minimize random accesses to main

memory scale better with respect to running many instances in parallel on a

single machine. This is likely to become a more important factor in speed as

the number of cores in a CPU increases to tens or hundreds. So even if we are

not doing parallel model checking, this could be important to performance

in a “grid” or “cloud” computing environment.

11.3.4 Summary

Although not likely to be the fastest data structure for concurrent, shared-

memory access, my adaptive storage scheme is likely to find application in

parallel computing environments, because of its dynamic flexibility and fa-

vorable access pattern to main memory.

CHAPTER 12

Other Related Work

Besides the related work cited throughout, there are other data structures

that might be used to solve Problem 3.1. Some structures, such as Pagh et

al.’s “optimal Bloom filter replacement” [65], look good in theory but do not

have good practical performance (see Section 5 of [65]). Another structure

with nice asymptotics but little indication of being practical is by Brodnik

and Munro [11].

Here I survey other promising structures that have been subject to prac-

tical evaluation.

12.1 Golomb-compressed sequence

Putze, Sanders, and Singler describe a space-efficient Bloom filter alternative

that adds random access to a sorted list encoded with an efficient, variable-

length encoding [72, Section 4 (gcs)]. This involves keeping a table of bit-

accurate pointers to where particular ranges of values start. Insertion and

deletion is supported by adding to another table for recently added and

deleted elements and periodically rebuilding the main table to reflect the

changes.

This approach, and the paper generally, is geared toward the use of these

data structures as summaries, not as visited sets. Their basis for evaluation

is similar to that of the “summary cache” paper [28] or the “compressed

251

252 CHAPTER 12. OTHER RELATED WORK

Bloom filter” paper [62]. Consequently, the authors do not account for the

total memory footprint of the structure as it is being built, only the size

required for transmission over a network. If we were to account for the

metadata needed for random access, it is clear the structure is not asymptot-

ically compact. To have O(1) access times, we would need Θ(n) pointers into

the data pool, which, like the compacted chaining hash table (Section 5.3),

makes the space requirements diverge from the lower bound asymptotically.

Even if we relax the access times somewhat, the situation does not improve

much.

Perhaps more importantly, the design of this structure is not suited for

the visited list paradigm. The structure is much simpler and faster if you

commit to not adding any more elements. Unless a 100% false positive rate

is acceptable, adding more elements is an essential part of the visited list

usage paradigm (Definition 3.2). In fact, in many verification runs with

partial-order reductions, there are more ADD operations than positive QUERY

operations; thus, efficient adding is crucial. It is possible the design of the

Golomb-compressed sequence could be tweaked to have better random ac-

cess and perhaps better asymptotic memory requirements, but I suspect the

Cleary table discipline of elements in fixed-size cells is the better solution for

the visited set paradigm.

It is worth noting that one of the structures considered in the Putze,

Sanders, and Singler paper is the Cleary table, though with a variation that

improves access times by using a small relative pointer that, with high like-

lihood, enables jumping straight to the run for a home address. This is an-

other design choice that is useful when the structure is used as a summary,

but not as much when used as a visited set. (A Cleary table variant uses a

related indexing structure. See Section 9.5.1.)

12.2. CUCKOO HASHING 253

12.2 Cuckoo hashing

Pagh and Rodler’s cuckoo hashing is an effective method of building a hash

table with worst-case O(1) query time [69, 70, 29]. Basically, hash functions

determine a constant number of locations, originally just two, at which a

value can be stored in the table. Querying is always O(1) time because it is

just a matter of checking each of the constant number of allowed locations.

To add, an element is put in one of its allowed locations and, if necessary

“bumps” an element already there to another of its allowed locations, re-

cursively until the operation succeeds or an infinite loop is suspected. In

a well-known generalization by Dietzfelbinger and Weidling, each location

has a bucket that can hold up to some fixed number of elements [21].

It is known, but not often mentioned, that the structure can be made

asymptotically compact [68]. This is done by using the location in the struc-

ture to encode part of the stored element, which Pagh calls quotienting [67],

though the basic idea can be traced to Morris [64] and possibly others like

Cleary [14].

Cuckoo hashing is another design that seems to be optimized for usage

paradigms unlike the visited set usage paradigm. When we add to a cuckoo

hashing table, we often spend a little time re-arranging elements until we

get them in a configuration that satisfies the niceO(1) worst-case query time.

Because each negative QUERY for a visited set entails an ADD, there is limited

potential to recoup that expense in ADD time with savings in QUERY time.

Also, the constant factors in the query time are not very good for the vis-

ited set usage paradigm. In particular, the time for a negative query remains

constant through the life of the structure, and entails checking each allowed

location of the value. (Using buckets can improve the situation slightly.)

Contrast this to the Cleary table, in which most negative queries require the

checking of just one bit, until the structure gets more than half full. Ex-

cept in extreme or unusual cases, there will be roughly as many queries to

254 CHAPTER 12. OTHER RELATED WORK

a visited set when the structure is 20%, 40%, or 60% full as there are when

it is 80% or 90% full. Thus, in the visited set paradigm, the query times

when the structure is nearly overflowing are not as important as the average

query time over all occupancies. In fact, in a model checker, having faster

operations at lower occupancies facilitates finding errors more quickly.

These conjectures about the relative performance of cuckoo hashing in

the visited set usage paradigm are not interesting to me, however, unless we

can make cuckoo hashing adaptive in the way I have done for Cleary tables.

The use of multiple hash functions seems to be a large obstacle to throw-

ing away specific information about each state while maintaining locality in

the adaptation procedure. Consider the original cuckoo hashing structure,

with two hash functions and a dedicated table for each hash function. To

eliminate redundant storage of element home addresses (via quotienting),

the hash functions need to be one-to-one (randomization functions). The

inverse of each hash function is used to recover the original descriptor when

“bumping” an entry. It seems quite simple to double the number of cells by

cutting the size in half, but by storing only part of each hashed descriptor, we

can no longer recover the original descriptor for bumping to another table

with a different hash function.

Another possible strategy is to use one randomization function, but to

use different parts of the randomized descriptor as the index in different

tables. This strategy starts to cause trouble when there is not enough de-

scriptor left to split into fully independent indices. As in Bloom filters, there

is some kind of performance degradation associated with dependence in the

hash function results. For cuckoo hashing, the degradation will be in inser-

tion times and the occupancy at which the table is not able to add the next

element. Observe that if there is no independence in the computed indices,

it is equivalent to the corresponding indices being part of the same bucket,

but without the locality. It would be worth investigating the effectiveness of

this strategy, but unless a lot of re-arranging is allowed in adaptation, the de-

12.3. MULTILEVEL HASHING 255

pendence among hash functions required for the cuckoo configuration with

the smallest entries would need to be included from the start. On the face,

the Cleary table’s use of a single hash function seems better-suited for fast

adaptation.

One attractive aspect of cuckoo hashing compared to the Cleary table is

that it does not require any locking to be accessed in parallel, assuming each

entry can fit in an atomically-accessible memory word.

12.3 Multilevel hashing

A related scheme that predates cuckoo hashing is Broder and Karlin’s mul-

tilevel hashing [10]1. It is different from cuckoo hashing in that there are

typically Θ(log log n) tables, each with its own hash function, that are probed

in a prescribed order, with earlier ones much larger than later ones. With

each entry stored in the earliest table with the corresponding location avail-

able, negative queries can return upon encountering an empty cell. The

original inception of the structure did not do any re-arranging of elements

already added, but Mitzenmacher and Kirsch have demonstrated the value

of such a cuckoo-like enhancement [57].

Like the Cleary table, multilevel hashing starts out with very fast queries,

but can be accessed in parallel as a cuckoo hashing table can. Multilevel

has the same complications for adaptation as cuckoo hashing, due to the

need for multiple hash functions, plus another complication. Unlike cuckoo,

multilevel hashing has the invariant that the locations for an entry on earlier

1While listening to Antti Valmari’s invited talk at TACAS 2004, I independently invented
a structure I came to call the “hash pyramid” which used Θ(log n) levels of exponentially
diminishing size and quotienting to store values very compactly. In my room at the confer-
ence, I hacked together a prototype implementation and found that it beat the compacted
chaining structure Valmari described in his talk (left out of proceedings; journal version
published [82]). Discussions about the structure with Valmari and Jaco Geldenhuys led
them to draft a paper around my idea, but it was never accepted. We later discovered
threads of related work, such as Broder and Karlin’s, that made the hash pyramid not-so-
novel. As with most things, it had been done before. But with a little luck, the seemingly
obvious can be novel [24].

256 CHAPTER 12. OTHER RELATED WORK

levels must be occupied. The invariant is crucial for good query times in

software. Making room for more entries by shrinking the size of each cell,

seems to require breaking the invariant temporarily. The first pass would be

trivial, streaming adaptation, and the second pass would traverse all the el-

ements in levels beyond the first and attempt to re-place them in the earliest

available level. This would be intensive in random accesses and hash compu-

tation, so it would be much slower than Cleary table adaptation, even with

the cheap hash-reusing among the levels (to support in-place adaptation, as

described for cuckoo hashing).

In fact, it might be worth paying a small price in space to do multilevel

adaptation by building a new structure from the old instead of adapting in

place. This could be done in one pass and would not require early compro-

mises on hash function independence. The required auxiliary space could be

kept reasonably small by splitting the state space 2i ways and using quoti-

enting to pick a multilevel structure to add to. The memory available would

be split 2i + 1 ways, so that a free space is available for adapting to when a

partition gets too full. The space for the old structure for that partition then

becomes the free space.

12.4 Summary

Other structures do not seem to have the properties that make Cleary tables

well-suited for fast adaptive storage, at in the case of being accessed by a

single thread.

Bibliography

[1] Susanne Albers. Competitive online algorithms. BRICS Lecture Se-

ries LS-96-2, University of Aarhus, BRICS, Department of Computer

Science, 1996.

[2] O. Amble and Donald E. Knuth. Ordered hash tables. The Computer

Journal, 17(2):135–142, 1974.

[3] Tonglaga Bao and Michael Jones. Time-efficient model checking with

magnetic disk. In TACAS, volume 3440 of LNCS, pages 526–540.

Springer, 2005.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. Symbolic model checking without BDDs. In 5th International

Conference on Tools and Algorithms for Construction and Analysis of

Systems (TACAS), pages 193–207. Springer-Verlag, 1999.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, July 1970.

[6] Allan Borodin. Online Computation and Competitive Analysis. Cam-

bridge University Press, Cambridge, 1998.

[7] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morri-

son, M. Smid, and Y. Tang. On the false-positive rate of Bloom fil-

ters. Submitted for publication, May 2004. http://cg.scs.carleton.ca/

~morin/publications/ds/bloom-submitted.pdf.

257

258 BIBLIOGRAPHY

[8] Dragan Bosnacki and Gerard J. Holzmann. Improving spin’s partial-

order reduction for breadth-first search. In 12th SPIN Workshop

on Model Checking Software, volume 3639 of LNCS, pages 91–105.

Springer, 2005.

[9] Andrei Broder and Michael Mitzenmacher. Network applications

of Bloom filters: A survey. In Proc. of the 40th Annual Allerton

Conference on Communication, Control, and Computing, pages 636–

646, 2002.

[10] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing.

In Proceedings of the first annual ACM-SIAM symposium on Discrete

algorithms, SODA ’90, pages 43–53, Philadelphia, PA, USA, 1990. So-

ciety for Industrial and Applied Mathematics.

[11] Andrej Brodnik and J. Ian Munro. Membership in constant time and

almost-minimum space. SIAM Journal of Computing, 28:1627–1640,

May 1999.

[12] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 1020 states and beyond. Information and

Computation, 98(2):142–170, June 1992.

[13] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark

Wegman. Exact and approximate membership testers. In STOC

’78: Proceedings of the tenth annual ACM symposium on Theory of

computing, pages 59–65. ACM, 1978.

[14] John G. Cleary. Compact hash tables using bidirectional linear probing.

IEEE Trans. Computers, 33(9):828–834, 1984.

[15] C.N. Ip and D.L. Dill. Better verification through symmetry. In

Computer Hardware Description Languages and their Applications,

259

pages 87–100, Ottawa, Canada, 1993. Elsevier Science Publishers B.V.,

Amsterdam, Netherland.

[16] Saar Cohen and Yossi Matias. Spectral bloom filters. In Proceedings of

the 2003 ACM SIGMOD international conference on on Management

of data, pages 241–252. ACM Press, 2003.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. McGraw-Hill Higher Education,

2001.

[18] Bernard Cousin and Jean-Michel Hélary. Performance improvement of

state space exploration by regular and differential hashing functions.

In 6th Internation Conference on Computer-Aided Verification, pages

364–376, 1994.

[19] Martin Dietzfelbinger and Rasmus Pagh. Succinct data struc-

tures for retrieval and approximate membership. Technical Report

arXiv:0803.3693v1 [cs.DS], arXiv.org, 2008.

[20] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for

retrieval and approximate membership (extended abstract). In ICALP

(1), volume 5125 of Lecture Notes in Computer Science, pages 385–

396. Springer, 2008.

[21] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation

and dictionaries with tightly packed constant size bins. Theoretical

Compututer Science, 380:47–68, July 2007.

[22] Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios. Hack-

ing and extending ACL2. In Ruben Gamboa, Jun Sawada, and

John Cowles, editors, Seventh International Workshop on the ACL2

Theorem Prover and its Applications (ACL2 2007), 2007.

260 BIBLIOGRAPHY

[23] Peter C. Dillinger and Panagiotis Manolios. Bloom filters in proba-

bilistic verification. In Formal Methods in Computer-Aided Design

(FMCAD) 2004, volume 3312 of LNCS. Springer, 2004.

[24] Peter C. Dillinger and Panagiotis Manolios. Fast and accurate bitstate

verification for SPIN. In 11th SPIN Workshop on Model Checking

Software, volume 2989 of LNCS. Springer, April 2004.

[25] Peter C. Dillinger and Panagiotis Manolios. Enhanced probabilistic ver-

ification with 3Spin and 3Murphi. In 12th SPIN Workshop on Model

Checking Software, volume 3639 of LNCS. Springer, August 2005.

[26] Peter C. Dillinger and Panagiotis Manolios. Fast, all-purpose state stor-

age. In 16th SPIN Workshop on Model Checking Software, volume

5578 of LNCS. Springer-Verlag, June 2009.

[27] Paul Erdős and Joel Spencer. Probabilistic Methods in Combinatorics.

Academic Press, New York, 1974.

[28] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary

cache: a scalable wide-area Web cache sharing protocol. IEEE/ACM

Transactions on Networking, 8(3):281–293, 2000.

[29] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.

Space efficient hash tables with worst case constant access time.

Theory of Computing Systems, 38(2):229–248, 2005.

[30] Jaco Geldenhuys. State caching reconsidered. In 11th SPIN Workshop

on Model Checking Software, volume 2989 of LNCS, pages 23–38.

Springer, 2004.

[31] Jaco Geldenhuys and Antti Valmari. A nearly memory-optimal data

structure for sets and mappings. In 11th SPIN Workshop on Model

Checking Software, volume 2648 of LNCS, pages 136–150. Springer,

2003.

261

[32] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-

space caching revisited. Formal Methods in System Design, 7(3):227–

241, 1995.

[33] Patrice Godefroid and Pierre Wolper. A partial approach to model

checking. In Logic in Computer Science, pages 406–415, 1991.

[34] Gaston H. Gonnet. Handbook of Algorithms and Data Structures.

Addison-Wesley, 1984.

[35] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java

Language Specification, Third Edition. Addison-Wesley Longman, Am-

sterdam, 3 edition, June 2005.

[36] Gerard J. Holzmann. On limits and possibilities of automated protocol

analysis. In Protocol Specification, Testing and Verification VII, pages

339–344, 1987.

[37] Gerard J. Holzmann. An improved protocol reachability analysis tech-

nique. Software–Practice & Experience, 18(2):137–161, 1988.

[38] Gerard J. Holzmann. Algorithms for automated protocol validation.

Technical Report 69:32-44, AT&T Technical Journal, 1990.

[39] Gerard J. Holzmann. Design and Validation of Computer Protocols.

Prentice Hall, 1991.

[40] Gerard J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int.

Conf on Protocol Specification, Testing, and Verification, INWG/IFIP,

pages 301–314, Warsaw, Poland, 1995. Chapman & Hall.

[41] Gerard J. Holzmann. State compression in SPIN: Recursive index-

ing and compression training runs. In Proceedings of the Third

International SPIN Workshop, 1997.

262 BIBLIOGRAPHY

[42] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference

Manual. Addison-Wesley, Boston, Massachusetts, 2003.

[43] Gerard J. Holzmann and Dragan Bosnacki. The design of a multi-

core extension of the spin model checker. IEEE Trans. Softw. Eng.,

33(10):659–674, 2007.

[44] Gerard J. Holzmann and Rajeev Joshi. Model-driven software verifi-

cation. In 11th SPIN Workshop on Model Checking Software, volume

2989 of LNCS, pages 76–91. Springer, 2004.

[45] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Model driven code

checking. Automated Software Engineering, 15(3-4):283–297, 2008.

[46] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification.

In 23rd IEEE/ACM International Conference on Automated Software

Engineering, pages 1–6, 2008.

[47] Gerard J. Holzmann and Doron Peled. Partial order reduction of the

state space. In First SPIN Workshop, Montrèal, Quebec, 1995.

[48] Gerard J. Holzmann and Anuj Puri. A minimized automaton represen-

tation of reachable states. International Journal on Software Tools for

Technology Transfer (STTT), 2(3):270–278, 1999.

[49] Gerard J. Holzmann and Margaret H. Smith. Automating software

feature verification. Bell Labs Technical Journal, 5(2):72–87, 2000.

[50] Gerard J. Holzmann and Margaret H. Smith. An automated verification

method for distributed systems software based on model extraction.

IEEE Transactions on Software Engineering, 28(4):364–377, 2002.

[51] Bob Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal,

September 1997.

[52] Bob Jenkins. http://burtleburtle.net/bob/hash/index.html, 2007.

263

[53] Sndor Juhsz and kos Duds. Optimising large hash tables for lookup

performance. In IADIS International Conference Informatics 2008,

pages 107–114, 2008.

[54] Pim Kars. The application of promela and spin in the bos project. In

Second SPIN Workshop, 1996.

[55] Adam Kirsch and Michael Mitzenmacher. Less hashing, same perfor-

mance: Building a better bloom filter. In 14th European Symposium

on Algorithms, volume 4168 of LNCS, pages 456–467. Springer, 2006.

[56] Adam Kirsch and Michael Mitzenmacher. Less hashing, same per-

formance: Building a better bloom filter. Random Structures and

Algorithms, 33(2):187–218, 2008.

[57] Adam Kirsch and Michael Mitzenmacher. The power of one move:

Hashing schemes for hardware. In INFOCOM, pages 106–110, 2008.

[58] Donald Ervin Knuth. The Art of Computer Programming, volume 3:

Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,

2nd edition, 1997.

[59] Alfons Laarman, Jaco van de Pol, and Michael Weber. Boosting multi-

core reachability performance with shared hash tables. In Formal

Methods in Computer-Aided Design, 2010.

[60] Flavio Lerda and Riccardo Sisto. Distributed-memory model check-

ing with spin. In Theoretical and Practical Aspects of SPIN Model

Checking, volume 1680 of LNCS, pages 22–39. Springer, 1999.

[61] Wenbin Luo and Gregory L. Heileman. Improved exponential hashing.

IEICE Electronics Express, 1(7):150–155, 2004.

[62] Michael Mitzenmacher. Compressed Bloom filters. In Proc. of the

20th Annual ACM Symposium on Principles of Distributed Computing,

IEEE/ACM Trans. on Net., pages 144–150, 2001.

264 BIBLIOGRAPHY

[63] Michael Mitzenmacher and Eli Upfal. Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-

versity Press, New York, NY, USA, 2005.

[64] Robert Morris. Scatter storage techniques. Commun. ACM, 11(1):38–

44, 1968.

[65] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom

filter replacement. In SODA ’05: Proceedings of the sixteenth annual

ACM-SIAM symposium on Discrete algorithms, pages 823–829. SIAM,

2005.

[66] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with con-

stant independence. In STOC ’07: Proceedings of the thirty-ninth

annual ACM symposium on Theory of computing, pages 318–327, New

York, NY, USA, 2007. ACM.

[67] Rasmus Pagh. Low redundancy in static dictionaries with constant

query time. SIAM Journal of Computing, 31(2):353–363, 2001.

[68] Rasmus Pagh. On the cell probe complexity of membership and perfect

hashing. In Symposium on Theory of Computing (STOC), pages 425–

432, 2001.

[69] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In

European Symposium on Algorithms (ESA), volume 2161 of Lecture

Notes in Computer Science, pages 121–133. Springer, 2001.

[70] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal

of Algorithms, 51(2):122–144, 2004.

[71] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci,

and Marisa Venturini Zilli. Exploiting transition locality in automatic

verification of finite-state concurrent systems. International Journal on

Software Tools for Technology Transfer (STTT), 6(4):320–341, 2004.

265

[72] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-

and space-efficient bloom filters. In 6th International Workshop on

Experimental Algorithms (WEA), volume 4525 of LNCS, pages 108–

121. Springer, 2007.

[73] M. V. Ramakrishna. Practical performance of bloom filters and parallel

free-text searching. Communications of the ACM, 32(10):1237–1239,

1989.

[74] Bradley J. Smith, Gregory L. Heileman, and Chaouki Abdallah. The ex-

ponential hash function. Journal of Experimental Algorithmics (JEA),

2, January 1997.

[75] Ulrich Stern. Algorithmic Techniques in Verification by Explicit State

Enumeration. PhD thesis, Technical University of Munich, 1997.

[76] Ulrich Stern and David L. Dill. Automatic verification of the sci cache

coherence protocol. In CHARME, volume 987 of LNCS, pages 21–34.

Springer-Verlag, 1995.

[77] Ulrich Stern and David L. Dill. Improved probabilistic verification by

hash compaction. In P.E. Camurati and H. Eveking, editors, Correct

Hardware Design and Verification Methods, IFIP WG 10.5 Advanced

Research Working Conference, CHARME ’95, volume 987 of LNCS,

pages 206–224. Springer-Verlag, 1995.

[78] Ulrich Stern and David L. Dill. A new scheme for memory-

efficient probabilistic verification. In IFIP TC6/WG6.1 Joint Int’l

Conference on Formal Description Techniques for Distributed Systems

and Communication Protocols, and Protocol Specification, Testing, and

Verification, pages 333–348, 1996.

266 BIBLIOGRAPHY

[79] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. In

Computer Aided Verification (CAV), volume 1254 of LNCS, pages 256–

278. Springer, 1997.

[80] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. Formal

Methods in System Design, 18(2):117–129, 2001.

[81] Antti Valmari. The state explosion problem. In Lectures on Petri Nets

I: Basic Models, pages 429–528. Springer-Verlag, 1998.

[82] Antti Valmari. What the small Rubik’s cube taught me about data struc-

tures, information theory and randomisation. International Journal on

Software Tools for Technology Transfer (STTT), 8(3):180–194, 2006.

[83] Willem Visser. Memory efficient state storage in SPIN. In Proceedings

of the 2nd SPIN Workshop, pages 21–35, 1996.

[84] P. Wolper and D. Leroy. Reliable hashing without collision detection.

In 5th International Conference on Computer Aided Verification, pages

59–70, 1993.

	Acknowledgments
	Thesis Statement
	Abstract
	Contents
	List of Figures
	Outline of Contributions
	Motivation and Scope
	Verification problems
	Explicit-state vs. alternatives
	State enumeration
	Out-of-core storage and caching
	Heuristic storage
	Non-heuristic, potentially over-approximate storage
	Hash functions

	Overview of Dissertation
	Understanding the problem
	Bloom filters (bitstate hashing)
	Optimization
	Speed
	k= 3 usefulness
	Usefulness of other configurations

	Compacted hash tables (hash compaction)
	Adaptive Cleary tables
	Exact reduction
	Cleary tables
	Adaptation
	Designs
	Active state matching

	The State Storage Problem
	Definition
	Usage patterns
	Single case performance dimensions
	Single configuration performance
	Data structure performance
	Accuracy details
	False positive rate
	Omissions
	The Transitive Omission Problem
	Error omission bound
	Accuracy optimization criteria
	More definitions and analysis

	Lower Bounds for State Storage
	Most cases
	Various magnitudes
	Simpler bounds
	``Asymptotically compact'' litmus test
	Exact representation, infinite universe

	Classical Solutions
	Open-addressed table
	Bit table
	Compacted chaining
	Description
	Analysis
	A clever design: 2/3rds chaining

	Summary

	Bloom filters (Bitstate hashing)
	Introduction
	Accuracy analysis
	Optimization
	False positive rate, known v and m
	Expected hash omissions, known v and m
	Unknown v

	Speed and fingerprinting
	History
	Fingerprinting Bloom filter
	Hash-extending Bloom filter
	Hash-reusing Bloom filter
	Empirical validation

	Fast index computation
	Double hashing
	Triple hashing
	Improved double hashing
	Enhanced double hashing
	Related work: exponential double hashing
	Empirical validation
	In practice and future work

	Summary

	Compacted tables (Hash compaction)
	Description
	Basics
	Collision resolution
	Ordered hashing
	Implementation notes
	Maximum occupancy and configuration

	Accuracy analysis and validation
	By collisions
	Unordered
	Ordered, false positive rate
	Ordered, collisions
	Asymptotics
	Negative result: reordered hashing

	Summary

	Inexact Storage Using Exact Storage
	Introduction
	``Balls and bins'' partitioning
	``Even'' partitioning
	Comparison
	Summary

	Cleary tables
	Description
	Representation
	Random access
	An optimization

	add algorithm
	Analysis
	Validation
	Speed
	Compactness

	Variations
	Mini-pointers (sometimes useful)
	Non-power-of-two number of cells (sometimes useful)
	Different number of cells and home addresses (sometimes useful)
	Edge extension or edge wrapping (marginal benefit)
	Correcting directional favor (marginal benefit)
	Unidirectional (not recommended)
	Summary of Variations

	Summary

	Dynamic adaptation of Cleary tables
	Understanding fast adaptation
	Closer-first traversal
	Description
	Algorithm

	1-to-2 adaptation
	2-to-3 and 3-to-4 adaptation
	3-in-4 design
	Algorithm changes for 3-in-4 add
	Algorithm changes for 2-to-3 and 3-to-4 adaptation

	Post-adaptation access times
	Adaptation to Bloom filter
	k= 1
	Hash-reusing k= 2

	Summary

	Adaptive storage scheme
	Near optimal accuracy by design
	Utility of the theorem
	Design
	Exact storage case
	Inexact storage case
	Final notes on the theoretical bound

	Near optimal speed and accuracy in practice
	Practical problems with full design
	Practical implementation
	Active state matching
	Practical speed
	Practical accuracy

	Parallel model checking, etc.
	Message-passing parallel
	Shared memory parallel
	Independent parallel
	Summary

	Other Related Work
	Golomb-compressed sequence
	Cuckoo hashing
	Multilevel hashing
	Summary

	Bibliography

